Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)



SW $\Rightarrow $ Gr: From the Seiberg-Witten equations
to pseudo-holomorphic curves

Author: Clifford H. Taubes
Journal: J. Amer. Math. Soc. 9 (1996), 845-918
MSC (1991): Primary 53C07, 53C15
MathSciNet review: 1362874
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [Ar] N. Aronszajn, A unique continuation theorem for elliptic differential equations or inequalities of the second order, J. Math. Pures Appl. 36 (1957), 235-249. MR 19:1056c
  • [Au] T. Aubin, Nonlinear Analysis on Manifolds, Monge-Ampere Equations, Springer-Verlag, New York, 1982. MR 85j:58002
  • [Ch] S. Chang, Two dimensional area minimizing integral currents are classical minimal surfaces, JAMS 1 (1988), 699--778. MR 89i:49028
  • [Do] S. K. Donaldson, Lectures at MIT, September 1994.
  • [DN] A. Douglis and L. Nirenberg, Interior estimates for elliptic systems of partial differential equations, Comm. Pure Appl. Math. 8 (1955), 503--538. MR 17:743b
  • [Fe] H. Federer, Geometric Measure Theory, Springer-Verlag, New York, 1969. MR 41:1976
  • [FF] H. Federer and W. Fleming, Normal and integral currents, Ann. of Math. 72 (1960), 458--520. MR 23:A588
  • [FS] R. Fintushel and R. Stern, Immersed spheres in $4$-manifolds and the immersed Thom Conjecture, preprint, 1995.
  • [FU] D. Freed and K. K. Uhlenbeck, Instantons and Four Manifolds, Springer-Verlag, New York, 1984. MR 86c:57031
  • [Gr] M. Gromov, Pseudo-holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), 307--347. MR 87j:53053
  • [JT] A. Jaffe and C. H. Taubes, Vortices and Monopoles, Birkhäuser, Boston, 1980. MR 82m:81051
  • [Ki] J. R. King, The currents defined by analytic varieties, Acta Math. 127 (1971), 185--220. MR 52:14359
  • [KM1] P. B. Kronheimer and T. S. Mrowka, The genus of embedded surfaces in the projective plane, Math. Res. Letters 1 (1994), 797--808. MR 96a:57073
  • [KM2] ------, Recurrence relations and asymptotics for four-manifold invariants, Bull. Amer. Math. Soc. 30 (1994), 215--221. MR 94k:57046
  • [La] H. B. Lawson, Minimal Varieties in Real and Complex Geometry, Sem. Math. Sup. Vol. 57, Presses Université de Montreal, 1974. MR 57:13798
  • [MS] D. McDuff and D. Salamon, $J$-Holomorphic Curves and Quantum Cohomology, preprint.
  • [MST] J. W. Morgan, Z. Szabó, and C. H. Taubes, A product formula for the Seiberg-Witten invariants and the generalized Thom conjecture, preprint, 1995.
  • [Mo] C. B. Morrey, Multiple integrals in the Calculus of Variations, Springer-Verlag, Berlin, 1966. MR 34:2380
  • [Mr] T. S. Mrowka, Lectures at Harvard University, Spring, 1995.
  • [Rua] Y. Ruan, Symplectic topology and complex surfaces, in Geometry and Topology on Complex Manifolds, T. Mabuchi, J. Noguchi, T. Ochial, eds., World Scientific Publications, Singapore, 1994.
  • [Rut] H. Rutishauser, Uber die Folgen und Scharen von analytishen und meromorphen Funktionen mehrerer Variabeln, sowie von analytishen Abbildungen, Acta Math. 83 (1950), 249--325. MR 12:90f
  • [SU] J. Sacks and K. K. Uhlenbeck, The existence of minimal immersions of $2$-spheres, Ann. of Math. 113 (1981), 1--24. MR 82f:58035
  • [SW1] N. Seiberg and E. Witten, Electro-magnetic duality, monopole condensation and confinement in $N=2$ supersymmetric Yang-Mills theory, Nucl. Phys. B426 (1994), 19--52. MR 95m:81202a; MR 95m:81202b
  • [SW2] ------, Monopoles, duality and chiral symmetry breaking in $N=2$ supersymmetric QCD, Nucl. Phys. B431 (1994), 485--550. MR 95m:81203
  • [SS] S. Smale, An infinite dimensional version of Sard's theorem, Amer. J. Math. 87 (1965), 861--866. MR 32:3067
  • [St] W. Stoll, The growth of the area of a trancendental analytic set. I, Math. Ann. 156 (1964), 47--78. MR 29:3670
  • [T1] C. H. Taubes, The Seiberg-Witten and the Gromov invariants, Math. Res. Letters 2 (1995), 221--238. MR 96a:57076
  • [T2] ------, The Seiberg-Witten invariants and symplectic forms, Math. Res. Letters 1 (1995), 809--822. MR 95j:57039
  • [T3] ------, On the equivalence of first and second order equations for gauge theories, Commun. Math. Phys. 75 (1980), 207--227. MR 83b:81098
  • [T4] ------, Arbitrary $n$-vortex solutions to the first order Ginzburg-Landau equations, Commun. Math. Phys. 72 (1980), 277--292. MR 83c:81124
  • [T5] ------, More constraints on symplectic manifolds from the Seiberg-Witten invariants, Math. Res. Letters 2 (1995), 9--13. MR 96a:57075
  • [W] E. Witten, Monopoles and $4$-manifolds, Math. Res. Letters 1 (1994), 769--796. CMP 95:05
  • [Ye] R. Ye, Gromov's compactness theorem for pseudo-holomorphic curves, Trans. Amer. Math. Soc. 342 (1994), 671--694. MR 94f:58030

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (1991): 53C07, 53C15

Retrieve articles in all journals with MSC (1991): 53C07, 53C15

Additional Information

Clifford H. Taubes
Affiliation: Department of Mathematics, Harvard university, Cambridge, Massachusetts 02138

Received by editor(s): June 26, 1995
Received by editor(s) in revised form: August 7, 1995
Additional Notes: The author is supported in part by the National Science Foundation
Article copyright: © Copyright 1996 American Mathematical Society