Essential closed surfaces in bounded 3-manifolds

Authors:
D. Cooper, D. D. Long and A. W. Reid

Journal:
J. Amer. Math. Soc. **10** (1997), 553-563

MSC (1991):
Primary 57M50

DOI:
https://doi.org/10.1090/S0894-0347-97-00236-1

MathSciNet review:
1431827

Full-text PDF Free Access

References | Similar Articles | Additional Information

**1.**J. W. Anderson,*Closed essential surfaces in hyperbolizable acylindrical manifolds*. Preprint.**2.**B. Freedman & M.H. Freedman*Haken finiteness for bounded -manifolds, locally free groups and cyclic covers.*Preprint.**3.**D. Gabai*On 3-manifolds finitely covered by surface bundles*, In Low-dimensional Topology and Kleinian Groups, L. M. S. Lecture Note Series, vol 112, Ed. D. B. A. Epstein, pp 146-155, C. U. P. (1986). MR**88m:57021****4.**J. Hempel.*Residual finiteness for -Manifolds.*In Combinatorial Group Theory and Topology. Ann. of Math. Studies, vol. 111 pp. 379 -396, P. U. P (1987). MR**89b:57002****5.**J. Hempel.*3-manifolds.*Ann. of Math. Studies, vol. 86, P. U. P. (1976). MR**54:3702****6.**D.D. Long & G. Niblo.*Subgroup Separability and -manifold groups.*Math. Zeit. vol. 207 (1991), pp.209 - 215. MR**92g:20047****7.**M. Scharlemann & Y. Q. Wu*Hyperbolic manifolds and degenerating handle additions.*J. Aust. Math. Soc. vol. 55 (1993) pp. 72 -89. MR**94e:57019****8.**W.P. Thurston.*The Geometry and Topology of 3-manifolds.*Princeton University mimeographed notes. (1979)**9.**W.P. Thurston.*Three dimensional manifolds, Kleinian groups and hyperbolic geometry.*Bull. A.M.S. vol 6 (1982) pp. 357 - 381. MR**83h:57019****10.**F. Waldhausen.*On irreducible three-manifolds which are sufficiently large.*Ann. of Math. 87 (1968) pp. 56 - 68. MR**36:7146**

Retrieve articles in *Journal of the American Mathematical Society*
with MSC (1991):
57M50

Retrieve articles in all journals with MSC (1991): 57M50

Additional Information

**D. Cooper**

Affiliation:
Department of Mathematics, University Of California, Santa Barbara, California 93106

**A. W. Reid**

Affiliation:
Department of Mathematics, University of Texas, Austin, Texas 78712

Email:
areid@math.utexas.edu

DOI:
https://doi.org/10.1090/S0894-0347-97-00236-1

Received by editor(s):
September 5, 1996

Additional Notes:
The first two authors were partially supported by the NSF, and the third by the Royal Society.

Article copyright:
© Copyright 1997
American Mathematical Society