Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

Quantum Schubert polynomials


Authors: Sergey Fomin, Sergei Gelfand and Alexander Postnikov
Journal: J. Amer. Math. Soc. 10 (1997), 565-596
MSC (1991): Primary 14M15; Secondary 05E15, 14N10.
DOI: https://doi.org/10.1090/S0894-0347-97-00237-3
MathSciNet review: 1431829
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. A. Astashkevich and V. Sadov, Quantum cohomology of partial flag manifolds $F_{n_1,\dots ,n_k}\,$, Comm. Math. Phys. 170 (1995), 503-528. MR 96g:58027
  • 2. I. N. Bernstein, I. M. Gelfand, and S. I. Gelfand, Schubert cells and cohomology of the space $G/P$, Russian Math. Surveys 28 (1973), 1-26. MR 55:2941
  • 3. A. Bertram, Quantum Schubert calculus, Advances in Math. (to appear).
  • 4. S. C. Billey and M. Haiman, Schubert polynomials for the classical groups, J. Amer. Math. Soc. 8 (1995), 443-482. CMP 95:05
  • 5. A. Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes des groupes de Lie compacts, Ann. of Math. (2) 57 (1953), 115-207. MR 14:490e
  • 6. C. Chevalley, Sur les décompositions cellulaires des espaces $G/B$, in: Algebraic Groups and Their Generalizations (W. Haboush and B. Parshall, eds.), Proc. Symp. Pure Math., vol. 56, Part 1, Amer. Math. Soc., Providence, RI, 1994, pp. 1-23. MR 95e:14041
  • 7. I. Ciocan-Fontanine, Quantum cohomology of flag varieties, Intern. Math. Research Notices (1995), no. 6, 263-277. MR 96h:14071
  • 8. M. Demazure, Désingularization des variétés de Schubert généralisées, Ann. Scient. Ecole Normale Sup. (4) 7 (1974), 53-88. MR 50:7174
  • 9. C. Ehresmann, Sur la topologie de certains espaces homogènes, Ann. of Math. 35 (1934), 396-443.
  • 10. P. di Francesco and C. Itzykson, Quantum intersection rings, in: The Moduli Space of Curves (R. Dijkgraaf, C. Faber, and G. van der Geer, eds.), Progress in Mathematics, vol. 129, Birkhäuser, Boston, 1995, pp. 81-148. MR 96k:14041
  • 11. S. Fomin and A. N. Kirillov, Combinatorial $B_n$-analogues of Schubert polynomials, Trans. Amer. Math. Soc. 348 (1996), no. 9, 3591-3620. CMP 96:15
  • 12. S. Fomin, S. Gelfand, and A. Postnikov, Quantum Schubert polynomials, AMS electronic preprint AMSPPS #199605-14-008, April 1996.
  • 13. W. Fulton, Young tableaux with applications to representation theory and geometry, Cambridge University Press, 1996.
  • 14. W. Fulton and R. Pandharipande, Notes on stable maps and quantum cohomology, preprint alg-geom/9608011.
  • 15. A. Givental and B. Kim, Quantum cohomology of flag manifolds and Toda lattices, Comm. Math. Phys. 168 (1995), 609-641. MR 96c:58027
  • 16. B. Kim, Quantum cohomology of partial flag manifolds and a residue formula for their intersection pairing, Intern. Math. Research Notices (1995), no. 1, 1-16. MR 96c:58028
  • 17. B. Kim, On equivariant quantum cohomology, Intern. Math. Research Notices (1996), no. 17, 841-851. CMP 97:04
  • 18. B. Kim, Quantum cohomology of flag manifolds $G/B$ and quantum Toda lattices, preprint alg-geom/9607001.
  • 19. M. Kontsevich and Yu. Manin, Gromov-Witten classes, quantum cohomology, and enumerative geometry, Comm. Math. Phys. 164 (1994), 525-562. MR 95i:14049
  • 20. B. Kostant, Flag manifold quantum cohomology, the Toda lattice, and the representation with highest weight $\rho $, Selecta Math. (N.S.) 2 (1996), 43-91. CMP 96:16
  • 21. A. Lascoux, Classes de Chern des varietes de drapeaux, C. R. Acad. Sci. Paris 295 (1982), 393-398. MR 85e:14074
  • 22. A. Lascoux and M. P. Schützenberger, Polynômes de Schubert, C. R. Acad. Sci. Paris 294 (1982), 447-450. MR 83e:14039
  • 23. A. Lascoux and M. P. Schützenberger, Fonctorialité de polynômes de Schubert, Contemp. Math. 88 (1989), 585-598. MR 90i:16003
  • 24. J. Li and G. Tian, The quantum cohomology of homogeneous varieties, J. Algebraic Geom. (to appear).
  • 25. I. G. Macdonald, Notes on Schubert polynomials, Publications LACIM, Montréal, 1991.
  • 26. D. Monk, The geometry of flag manifolds, Proc. London Math. Soc. 9 (1959), 253-286. MR 21:5641
  • 27. P. Pragacz and J. Ratajski, Formulas for Lagrangian and orthogonal degeneracy loci; the $Q$-polynomial approach, Compositio Math. (to appear).
  • 28. Y. Ruan and G. Tian, Mathematical theory of quantum cohomology, J. Diff. Geom. 42 (1995), no. 2, 259-367. MR 96m:58033
  • 29. B. Sturmfels, Algorithms in invariant theory, Springer-Verlag, Berlin, 1993. MR 94m:13004
  • 30. C. Vafa, Topological mirrors and quantum rings, in: Essays on Mirror Manifolds (S.-T. Yau, ed.), International Press, Boston, 1992. MR 94c:81193
  • 31. E. Witten, Two-dimensional gravity and intersection theory on moduli space, Surveys in Differential Geometry, vol. 1, International Press, Boston, 1991, pp. 243-310. MR 93e:32028

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (1991): 14M15, 05E15, 14N10.

Retrieve articles in all journals with MSC (1991): 14M15, 05E15, 14N10.


Additional Information

Sergey Fomin
Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Email: fomin@math.mit.edu

Sergei Gelfand
Affiliation: American Mathematical Society, P.O.Box 6248, Providence, Rhode Island 02940-6248
Email: sxg@ams.org

Alexander Postnikov
Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Email: apost@math.mit.edu

DOI: https://doi.org/10.1090/S0894-0347-97-00237-3
Keywords: Gromov-Witten invariants, quantum cohomology, flag manifold, Schubert polynomials
Received by editor(s): July 8, 1996
Received by editor(s) in revised form: December 23, 1996
Additional Notes: The first author was supported in part by NSF grant DMS-9400914.
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society