Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

Relative Bogomolov's inequality
and the cone of positive divisors
on the moduli space of stable curves


Author: Atsushi Moriwaki
Journal: J. Amer. Math. Soc. 11 (1998), 569-600
MSC (1991): Primary 14H10, 14C20; Secondary 14G40
DOI: https://doi.org/10.1090/S0894-0347-98-00261-6
MathSciNet review: 1488349
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $f : X \to Y$ be a surjective and projective morphism of smooth quasi-projective varieties over an algebraically closed field of characteristic zero with $\dim f = 1$. Let $E$ be a vector bundle of rank $r$ on $X$. In this paper, we would like to show that if $X_y$ is smooth and $E_y$ is semistable for some $y \in Y$, then $f_*\left( 2rc_2(E) - (r-1)c_1(E)^2 \right)$ is weakly positive at $y$. We apply this result to obtain the following description of the cone of weakly positive ${\mathbb{Q}}$-Cartier divisors on the moduli space of stable curves. Let $\overline{\mathcal{M}}_g$ (resp. $\mathcal{M}_g$) be the moduli space of stable (resp. smooth) curves of genus $g \geq 2$. Let $\lambda$ be the Hodge class, and let the $\delta _i$'s ($i = 0, \ldots, [g/2]$) be the boundary classes. Then, a ${\mathbb{Q}}$-Cartier divisor $x \lambda + \sum _{i=0}^{[g/2]} y_i \delta _i$ on $\overline{\mathcal{M}}_g$ is weakly positive over $\mathcal{M}_g$ if and only if $x \geq 0$, $g x + (8g + 4) y_0 \geq 0$, and $i(g-i) x + (2g+1) y_i \geq 0$ for all $1 \leq i \leq [g/2]$.


References [Enhancements On Off] (What's this?)

  • 1. F. A. Bogomolov, Holomorphic tensors and vector bundles on projective varieties, Math. USSR-Izv., 13 (1978), 499-555. MR 80j:14014
  • 2. J.-B. Bost, Semi-stability and height of cycles, Invent. Math., 118 (1994), 223-253. MR 95j:14024
  • 3. M. Cornalba and J. Harris, Divisor classes associated to families of stable varieties, with application to the moduli space of curves, Ann. Scient. Ec. Norm. Sup., 21 (1988), 455-475. MR 89j:14019
  • 4. P. Deligne and D. Mumford, The irreducibility of the space of curves of given genus, Publ. Math. IHES, 36 (1969), 75-110. MR 41:6850
  • 5. W. Fulton, Intersection Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Band 2, (1984), Springer-Verlag. MR 85k:14004
  • 6. D. Gieseker, Stable vector bundles and the Frobenius morphism, Ann. Scient. Ec. Norm. Sup., 6(1973) 95-101. MR 48:3963
  • 7. D. Gieseker, On a theorem of Bogomolov on Chern classes of stable bundles, Amer. J. Math., 101 (1979), 79-85. MR 80j:14015
  • 8. R. Hartshorne, Ample vector bundles on curves, Nagoya Math. J. 43 (1971) 73-90. MR 45:1929
  • 9. J.-P. Jouanolou, Théorèmes de Bertini et Applications, Birkhäuser (1983). MR 86b:13007
  • 10. F. Knudsen and D. Mumford, The projectivity of the moduli space of stable curves, I: Preliminaries on ``$\det$'' and ``$\operatorname{Div}$'', Math. Scand. 39 (1976), 19-55. MR 55:10465
  • 11. M. Maruyama, The theorem of Grauer-Mulich-Spindler, Math. Ann. 255 (1981), 317-333. MR 82k:14012
  • 12. Y. Miyaoka, The Chern Classes and Kodaira Dimension of a Minimal Variety, Advanced Studies in Pure Mathematics 10, 1987, Algebraic Geometry, Sendai, 1985, 449-476, Kinokuniya. MR 89k:14022
  • 13. A. Moriwaki, Arithmetic Bogomolov-Gieseker's inequality, Amer. J. Math. 117 (1995), 1325-1347. MR 96i:14022
  • 14. A. Moriwaki, Bogomolov conjecture over function fields for stable curves with only irreducible fibers, Comp. Math. 105 (1997), 125-140. CMP 97:10
  • 15. A. Moriwaki, Bogomolov conjecture for curves of genus 2 over function fields, J. Math. Kyoto Univ. 36 (1996), 687-695. CMP 97:11
  • 16. A. Moriwaki, A sharp slope inequality for general stable fibrations of curves, J. reine angew. Math. 480 (1996), 177-195. MR 97m:14029
  • 17. D. Mumford, Stability of projective varieties, L'Enseignement Math., 23 (1977), 39-110. MR 56:8568
  • 18. A. Paranjape and S. Ramanan, On the canonical ring of an algebraic curve, Algebraic Geometry and Commutative Algebra in Honor of Masayoshi NAGATA, vol. II (1987), 501-516. MR 90b:14024
  • 19. E. Ullmo, Positivité et discretion des points algébriques des courbes, preprint.
  • 20. G. Xiao, Fibered algebraic surfaces with low slope, Math. Ann., 276 (1987), 449-466. MR 88a:14046
  • 21. S. Zhang, Admissible pairing on a curve, Invent. Math., 112 (1993), 171-193. MR 94h:14023

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (1991): 14H10, 14C20, 14G40

Retrieve articles in all journals with MSC (1991): 14H10, 14C20, 14G40


Additional Information

Atsushi Moriwaki
Affiliation: Department of Mathematics, Faculty of Science, Kyoto University, Kyoto, 606-01, Japan
Email: moriwaki@kusm.kyoto-u.ac.jp

DOI: https://doi.org/10.1090/S0894-0347-98-00261-6
Keywords: Bogomolov's inequality, moduli space, stable curve
Received by editor(s): April 17, 1997
Received by editor(s) in revised form: January 2, 1998
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society