Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)



Contracting modules and standard monomial theory for symmetrizable Kac-Moody algebras

Author: Peter Littelmann
Journal: J. Amer. Math. Soc. 11 (1998), 551-567
MSC (1991): Primary 17B10, 17B67, 20G05, 14M15
MathSciNet review: 1603862
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The aim of this article is to attach to the set of L-S paths of type $\lambda $ in a canonical way a basis of the corresponding representation $V(\lambda )$. This basis has some nice algebraic-geometric properties. For example, it is compatible with restrictions to Schubert varieties and has the ``standard monomial property''. As a consequence we get new simple proofs of the normality of Schubert varieties, the surjectivity of the multiplication map or the restriction map for sections of a line bundle on Schubert varieties. Other applications to the defining ideal of Schubert varieties and associated Groebner basis will be discussed in a forthcoming paper.

References [Enhancements On Off] (What's this?)

  • [1] R. Dehy, Combinatorial results on Demazure modules, C. R. Acad. Sci. Paris Sér. I Math. 324 (1997), 977-980. MR 98c:17006
  • [2] M. Demazure, Désingularisations des variétés de Schubert généralisées, Ann. Sc. Ec. Norm. Sup. 7 (1974), 53-88. MR 50:7174
  • [3] Gonciulea, N., Lakshmibai, V., Degenerations of flag and Schubert varieties to toric varieties, Transform. Groups 1 (1996), 215-248. MR 98a:14065
  • [4] M. Kashiwara, Similarity of crystal bases, Contemp. Math. 194 (1996), 177-186. MR 97g:17013
  • [5] M. Kashiwara, Crystal bases of modified quantized enveloping algebras, Duke Math. J. 73 (1994), 383-414. MR 95c:17024
  • [6] S. Kumar, Demazure character formula in arbitrary Kac-Moody setting, Invent. Math. 89 (1987), 395-423. MR 88i:17018
  • [7] V. Lakshmibai, Tangent spaces to Schubert varieties, Math. Res. Lett. 2 (1995), 473-477. MR 96k:14039
  • [8] V. Lakshmibai, Bases for quantum Demazure modules II, Algebraic groups and their generalizations: quantum and infinite-dimensional methods, Proc. Sympos. Pure Math., vol. 56, 1994, pp. 149-168. MR 97e:17022
  • [9] V. Lakshmibai and C. S. Seshadri, Geometry of $G/P$ V, J. Algebra 100 (1986), 462-557. MR 87k:14059
  • [10] V. Lakshmibai and C. S. Seshadri, Standard monomial theory, Proceedings of the Hyderabad Conference on Algebraic Groups (S. Ramanan, eds.), Manoj Prakashan, Madras, 1991, pp. 279-323. MR 92k:14053
  • [11] P. Littelmann, A Littlewood-Richardson formula for symmetrizable Kac-Moody algebras, Invent. Math. 116 (1994), 329-346. MR 95f:17023
  • [12] P. Littelmann, Paths and root operators in representation theory, Ann. Math. 142 (1995), 499-525. MR 96m:17011
  • [13] P. Littelmann, A plactic algebra for semisimple Lie algebras, Adv. Math 124 (1996), 312-331. MR 98c:17009
  • [14] P. Littelmann, Good filtrations and decomposition rules for representations with standard monomial theory, J. Reine Angew. Math. 433 (1992), 161-180. MR 94a:20072
  • [15] G. Lusztig, Introduction to Quantum groups, Progress in Mathematics, vol. 110, Birkhäuser Verlag, Boston, 1993. MR 94m:17016
  • [16] O. Mathieu, Construction d'un groupe de Kac-Moody et applications, Compos. Math. 69 (1989), 37-60. MR 90f:17012
  • [17] V. B. Mehta, A. Ramanathan, Schubert varieties in $G/B\times G/B$, Comp. Math. 67 (1988), 355-358. MR 89k:14090
  • [18] A. Ramanathan, Equations defining Schubert varieties and Frobenius splitting of diagonals, J. Publ. Math. Inst. Hautes Etud. Sci. 65 (1987), 61-90. MR 88k:14032
  • [19] S. Ramanan, A. Ramanathan, Projective normality of flag varieties and Schubert varieties, Invent. Math. 79 (1985), 217-224. MR 86j:14051
  • [20] K. N. Raghavan, P. Sankaran, Monomial bases for representations of classical semisimple Lie algebras, J. Trans. Groups (to appear).

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (1991): 17B10, 17B67, 20G05, 14M15

Retrieve articles in all journals with MSC (1991): 17B10, 17B67, 20G05, 14M15

Additional Information

Peter Littelmann
Affiliation: Université Louis Pasteur et Institut Universitaire de France, Institut de Recherche Mathématique Avancée 7, rue René Descartes, F-67084 Strasbourg Cedex, France

Keywords: Path model, quantum Frobenius map, standard monomial theory
Received by editor(s): July 17, 1997
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society