Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Journal of the American Mathematical Society
Journal of the American Mathematical Society
ISSN 1088-6834(online) ISSN 0894-0347(print)

 

Purity of the stratification by Newton polygons


Authors: A. J. de Jong and F. Oort
Journal: J. Amer. Math. Soc. 13 (2000), 209-241
MSC (2000): Primary 14L05, 14B05
Published electronically: September 22, 1999
MathSciNet review: 1703336
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $S$ be a variety in characteristic $p>0$. Suppose we are given a nondegenerate $F$-crystal over $S$, for example the $i$th relative crystalline cohomology sheaf of a family of smooth projective varieties over $S$. At each point $s$ of $S$ we have the Newton polygon associated to the action of $F$ on the fibre of the crystal at $s$. According to a theorem of Grothendieck the Newton polygon jumps up under specialization. The main theorem of this paper is that the jumps occur in codimension $1$ on $S$ (the Purity Theorem). As an application we prove some results on deformations of iso-simple $p$-divisible groups.


References [Enhancements On Off] (What's this?)

  • [1] M. Artin, Algebraization of formal moduli. II. Existence of modifications, Ann. of Math. (2) 91 (1970), 88–135. MR 0260747 (41 #5370)
  • [2] M. Artin, Algebraic approximation of structures over complete local rings, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 23–58. MR 0268188 (42 #3087)
  • [3] Pierre Berthelot, Cohomologie cristalline des schémas de caractéristique 𝑝>0, Lecture Notes in Mathematics, Vol. 407, Springer-Verlag, Berlin-New York, 1974 (French). MR 0384804 (52 #5676)
  • [4] Pierre Berthelot and William Messing, Théorie de Dieudonné cristalline. III. Théorèmes d’équivalence et de pleine fidélité, The Grothendieck Festschrift, Vol.\ I, Progr. Math., vol. 86, Birkhäuser Boston, Boston, MA, 1990, pp. 173–247 (French). MR 1086886 (92h:14012)
  • [5] B. Conrad, Irreducible components of rigid spaces, Preprint 1998. Available on http://www-math.mit.edu/$\sim $dejong
  • [6] A. J. de Jong, Crystalline Dieudonné module theory via formal and rigid geometry, Inst. Hautes Études Sci. Publ. Math. 82 (1995), 5–96 (1996). MR 1383213 (97f:14047)
  • [7] A. J. de Jong, Smoothness, semi-stability and alterations, Inst. Hautes Études Sci. Publ. Math. 83 (1996), 51–93. MR 1423020 (98e:14011)
  • [8] A.J. de Jong, Homomorphisms of Barsotti-Tate groups and crystals in positive characteristic, Invent. Math. 134 (1998), pp. 209-241. CMP 99:03
  • [9] P. Deligne and D. Mumford, The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 75–109. MR 0262240 (41 #6850)
  • [10] Daniel Ferrand and Michel Raynaud, Fibres formelles d’un anneau local noethérien, Ann. Sci. École Norm. Sup. (4) 3 (1970), 295–311 (French). MR 0272779 (42 #7660)
  • [11] Benedict H. Gross, Ramification in 𝑝-adic Lie extensions, Journées de Géométrie Algébrique de Rennes (Rennes, 1978) Astérisque, vol. 65, Soc. Math. France, Paris, 1979, pp. 81–102. MR 563473 (81e:12018)
  • [12] Alexandre Grothendieck, Groupes de Barsotti-Tate et cristaux de Dieudonné, Les Presses de l’Université de Montréal, Montreal, Que., 1974 (French). Séminaire de Mathématiques Supérieures, No. 45 (Été, 1970). MR 0417192 (54 #5250)
  • [13] David Harbater, Fundamental groups and embedding problems in characteristic 𝑝, Recent developments in the inverse Galois problem (Seattle, WA, 1993), Contemp. Math., vol. 186, Amer. Math. Soc., Providence, RI, 1995, pp. 353–369. MR 1352282 (97b:14035), http://dx.doi.org/10.1090/conm/186/02191
  • [14] Lucien Szpiro (ed.), Séminaire sur les pinceaux arithmétiques: la conjecture de Mordell, Société Mathématique de France, Paris, 1985. Papers from the seminar held at the École Normale Supérieure, Paris, 1983–84; Astérisque No. 127 (1985). MR 801916 (87h:14017)
  • [15] Nicholas M. Katz, 𝑝-adic properties of modular schemes and modular forms, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Springer, Berlin, 1973, pp. 69–190. Lecture Notes in Mathematics, Vol. 350. MR 0447119 (56 #5434)
  • [16] Nicholas M. Katz, Slope filtration of 𝐹-crystals, Journées de Géométrie Algébrique de Rennes (Rennes, 1978) Astérisque, vol. 63, Soc. Math. France, Paris, 1979, pp. 113–163. MR 563463 (81i:14014)
  • [17] Ke Zheng Li, Classification of supersingular abelian varieties, Math. Ann. 283 (1989), no. 2, 333–351. MR 980602 (89k:14033), http://dx.doi.org/10.1007/BF01446439
  • [18] Ke-Zheng Li and Frans Oort, Moduli of supersingular abelian varieties, Lecture Notes in Mathematics, vol. 1680, Springer-Verlag, Berlin, 1998. MR 1611305 (99e:14052)
  • [19] Joseph Lipman, Desingularization of two-dimensional schemes, Ann. Math. (2) 107 (1978), no. 1, 151–207. MR 0491722 (58 #10924)
  • [20] Yu. I. Manin, The theory of commutative formal groups over fields of finite characteristic, Russian Mathematical Surveys 18, (1963), pp. 209-241.
  • [21] Hideyuki Matsumura, Commutative algebra, 2nd ed., Mathematics Lecture Note Series, vol. 56, Benjamin/Cummings Publishing Co., Inc., Reading, Mass., 1980. MR 575344 (82i:13003)
  • [22] William Messing, The crystals associated to Barsotti-Tate groups: with applications to abelian schemes, Lecture Notes in Mathematics, Vol. 264, Springer-Verlag, Berlin-New York, 1972. MR 0347836 (50 #337)
  • [23] Hiroo Miki, On 𝑍_{𝑝}-extensions of complete 𝑝-adic power series fields and function fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 21 (1974), 377–393. MR 0364206 (51 #461)
  • [24] Laurent Moret-Bailly, Pinceaux de variétés abéliennes, Astérisque 129 (1985), 266 (French, with English summary). MR 797982 (87j:14069)
  • [25] Laurent Moret-Bailly, Un problème de descente, Bull. Soc. Math. France 124 (1996), no. 4, 559–585 (French, with English and French summaries). MR 1432058 (98g:14003)
  • [26] David Mumford, The topology of normal singularities of an algebraic surface and a criterion for simplicity, Inst. Hautes Études Sci. Publ. Math. 9 (1961), 5–22. MR 0153682 (27 #3643)
  • [27] Peter Norman, An algorithm for computing local moduli of abelian varieties, Ann. Math. (2) 101 (1975), 499–509. MR 0389928 (52 #10757)
  • [28] Peter Norman and Frans Oort, Moduli of abelian varieties, Ann. of Math. (2) 112 (1980), no. 3, 413–439. MR 595202 (82h:14026), http://dx.doi.org/10.2307/1971152
  • [29] Frans Oort, Moduli of abelian varieties and Newton polygons, C. R. Acad. Sci. Paris Sér. I Math. 312 (1991), no. 5, 385–389 (English, with French summary). MR 1096617 (92a:14048), http://dx.doi.org/10.1007/978-3-0348-8303-0_14
  • [30] F. Oort, Newton polygons and formal groups: conjectures by Manin and Grothendieck, Utrecht Preprint 995, January 1997. [To appear]
  • [31] Richard S. Pierce, Associative algebras, Graduate Texts in Mathematics, vol. 88, Springer-Verlag, New York-Berlin, 1982. Studies in the History of Modern Science, 9. MR 674652 (84c:16001)
  • [32] Neantro Saavedra Rivano, Catégories Tannakiennes, Lecture Notes in Mathematics, Vol. 265, Springer-Verlag, Berlin-New York, 1972 (French). MR 0338002 (49 #2769)
  • [33] Jean-Pierre Serre, Corps locaux, Publications de l’Institut de Mathématique de l’Université de Nancago, VIII, Actualités Sci. Indust., No. 1296. Hermann, Paris, 1962 (French). MR 0150130 (27 #133)
  • [34] Jean-Pierre Serre, Groupes algébriques et corps de classes, Hermann, Paris, 1975 (French). Deuxième édition; Publication de l’Institut de Mathématique de l’Université de Nancago, No. VII; Actualités Scientifiques et Industrielles, No. 1264. MR 0466151 (57 #6032)
  • [35] J. T. Tate, 𝑝-𝑑𝑖𝑣𝑖𝑠𝑖𝑏𝑙𝑒 𝑔𝑟𝑜𝑢𝑝𝑠., Proc. Conf. Local Fields (Driebergen, 1966) Springer, Berlin, 1967, pp. 158–183. MR 0231827 (38 #155)
  • [36] T. Zink, The display of a formal $p$-divisible group, University of Bielefeld, Preprint 98-017, February 1998.
  • [SGA1] Revêtements étales et groupe fondamental, Springer-Verlag, Berlin-New York, 1971 (French). Séminaire de Géométrie Algébrique du Bois Marie 1960–1961 (SGA 1); Dirigé par Alexandre Grothendieck. Augmenté de deux exposés de M. Raynaud; Lecture Notes in Mathematics, Vol. 224. MR 0354651 (50 #7129)
  • [SGA2] Alexander Grothendieck, Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (𝑆𝐺𝐴 2), North-Holland Publishing Co., Amsterdam; Masson & Cie, Éditeur, Paris, 1968 (French). Augmenté d’un exposé par Michèle Raynaud; Séminaire de Géométrie Algébrique du Bois-Marie, 1962; Advanced Studies in Pure Mathematics, Vol. 2. MR 0476737 (57 #16294)
  • [SGA7] Groupes de monodromie en géométrie algébrique. I, Lecture Notes in Mathematics, Vol. 288, Springer-Verlag, Berlin-New York, 1972 (French). Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 I); Dirigé par A. Grothendieck. Avec la collaboration de M. Raynaud et D. S. Rim. MR 0354656 (50 #7134)
  • [EGA] A. Grothendieck, Éléments de géométrie algébrique. I. Le langage des schémas, Inst. Hautes Études Sci. Publ. Math. 4 (1960), 228. MR 0217083 (36 #177a)
    A. Grothendieck, Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphismes, Inst. Hautes Études Sci. Publ. Math. 8 (1961), 222. MR 0217084 (36 #177b)
    A. Grothendieck, Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. I, Inst. Hautes Études Sci. Publ. Math. 11 (1961), 167. MR 0217085 (36 #177c)
    A. Grothendieck, Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. II, Inst. Hautes Études Sci. Publ. Math. 17 (1963), 91 (French). MR 0163911 (29 #1210)
    A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. I, Inst. Hautes Études Sci. Publ. Math. 20 (1964), 259 (French). MR 0173675 (30 #3885)
    A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II, Inst. Hautes Études Sci. Publ. Math. 24 (1965), 231 (French). MR 0199181 (33 #7330)
    A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III, Inst. Hautes Études Sci. Publ. Math. 28 (1966), 255. MR 0217086 (36 #178)

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 14L05, 14B05

Retrieve articles in all journals with MSC (2000): 14L05, 14B05


Additional Information

A. J. de Jong
Affiliation: Massachusetts Institute of Technology, Department of Mathematics, Building 2, Room 270, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307
Email: dejong@math.mit.edu

F. Oort
Affiliation: Universiteit Utrecht, Mathematisch Instituut, Budapestlaan 6, NL-3508 TA Utrecht, The Netherlands
Email: oort@math.uu.nl

DOI: http://dx.doi.org/10.1090/S0894-0347-99-00322-7
PII: S 0894-0347(99)00322-7
Received by editor(s): October 28, 1998
Received by editor(s) in revised form: July 27, 1999
Published electronically: September 22, 1999
Additional Notes: The research of Dr. A.J. de Jong has been made possible by a fellowship of the Royal Netherlands Academy of Arts and Sciences.
Article copyright: © Copyright 1999 American Mathematical Society