Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

Purity of the stratification by Newton polygons


Authors: A. J. de Jong and F. Oort
Journal: J. Amer. Math. Soc. 13 (2000), 209-241
MSC (2000): Primary 14L05, 14B05
DOI: https://doi.org/10.1090/S0894-0347-99-00322-7
Published electronically: September 22, 1999
MathSciNet review: 1703336
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $S$ be a variety in characteristic $p>0$. Suppose we are given a nondegenerate $F$-crystal over $S$, for example the $i$th relative crystalline cohomology sheaf of a family of smooth projective varieties over $S$. At each point $s$ of $S$ we have the Newton polygon associated to the action of $F$ on the fibre of the crystal at $s$. According to a theorem of Grothendieck the Newton polygon jumps up under specialization. The main theorem of this paper is that the jumps occur in codimension $1$ on $S$ (the Purity Theorem). As an application we prove some results on deformations of iso-simple $p$-divisible groups.


References [Enhancements On Off] (What's this?)

  • [1] M. Artin, Algebraization of formal moduli II. Existence of modifications, Annals of Math. 91 (1970), pp. 209-241. MR 41:5370
  • [2] M. Artin, Algebraic approximation of structures over complete local rings, Publ. Math. I.H.E.S. 36 (1969), pp. 209-241. MR 42:3087
  • [3] P. Berthelot, Cohomologie cristalline des schémas de charactéristique $p>0$, Lect. Notes Math. 407, Springer - Verlag (1974). MR 52:5676
  • [4] P. Berthelot and W. Messing, Théorie de Dieudonné cristalline III, in: The Grothendieck Festschrift I, Progr. in Math. 86, Birkhäuser (1990), pp. 171-247. MR 92h:14012
  • [5] B. Conrad, Irreducible components of rigid spaces, Preprint 1998. Available on http://www-math.mit.edu/$\sim $dejong
  • [6] A.J. de Jong, Crystalline Dieudonné module theory via formal and rigid geometry, Publ. Math. I.H.E.S. 82, (1995), pp. 209-241. MR 97f:14047
  • [7] A.J. de Jong, Smoothness, semi-stability and alterations, Publ. Math. I.H.E.S. 83 (1996), pp. 209-241. MR 98e:14011
  • [8] A.J. de Jong, Homomorphisms of Barsotti-Tate groups and crystals in positive characteristic, Invent. Math. 134 (1998), pp. 209-241. CMP 99:03
  • [9] P. Deligne and D. Mumford, The irreducibility of the space of curves of given genus, Publ. Math. I.H.E.S. 36, (1969), pp. 209-241. MR 41:6850
  • [10] D. Ferrand, M. Raynaud, Fibres formelles d'un anneau local noethérien, Annals Sci. Ecole Norm. Sup. (4) 3 (1970), pp. 209-241; especially: Appendix, pp. 308-311. MR 42:7660
  • [11] B. Gross, Ramification in $p$-adic Lie extensions, in: Journées de Géométrie Algébriques (Rennes, 1978), Astérisque 65 (1979), pp. 209-241. MR 81e:12018
  • [12] A. Grothendieck, Groupes de Barsotti-Tate et cristaux de Dieudonné, Séminaire de mathématiques supérieures, Université de Montréal, Les presses de l'université de Montréal, 1974. MR 54:5250
  • [13] D. Harbater, Fundamental groups and embedding problems in characteristic $p$, in: Recent developments in the inverse Galois problem (Seattle, 1993), Contemp. Math. 186 (1995), pp. 209-241. MR 97b:14035
  • [14] L. Illusie, Déformations de groupes de Barsotti-Tate, d'après A. Grothendieck, in: Séminaire sur les pinceaux arithmétiques: la conjecture de Mordell, Astérisque 127 (1985), pp. 209-241. MR 87h:14017
  • [15] N. Katz, p-adic modular properties of modular schemes and modular forms, in: Modular Functions in One Variable III, Lect. Notes Math. 350, Springer - Verlag (1973), pp. 209-241. MR 56:5434
  • [16] N. Katz, Slope filtration of $F$-crystals, in: Journées de Géométrie Algébriques (Rennes, 1978), Astérisque 63 (1979), pp. 209-241. MR 81i:14014
  • [17] Ke-Zheng Li, Classification of supersingular abelian varieties, Math. Annalen 283 (1989), pp. 209-241. MR 89k:14033
  • [18] Ke-Zheng Li, F. Oort, Moduli of supersingular abelian varieties, Lect. Notes Math. 1680, Springer - Verlag (1998). MR 99e:14052
  • [19] J. Lipman, Desingularization of two-dimensional schemes, Annals of Math. 107 (1978), pp. 209-241. MR 58:10924
  • [20] Yu. I. Manin, The theory of commutative formal groups over fields of finite characteristic, Russian Mathematical Surveys 18, (1963), pp. 209-241.
  • [21] H. Matsumura, Commutative Algebra, Second Edition, Benjamin/Cummings Publishing Company, Inc. (1980). MR 82i:13003
  • [22] W. Messing, The crystals associated to Barsotti-Tate groups: with applications to abelian schemes, Lect. Notes Math. 264, Springer - Verlag (1972). MR 50:337
  • [23] Hiroo Miki, On ${\mathbb Z}_{p}$-extensions of complete $p$-adic power series fields and function fields, J. Fac. Sci. Univ. Tokyo, Sect. IA Math. 21 (1974), pp. 209-241. MR 51:461
  • [24] L. Moret-Bailly, Pinceaux de variétés Abeliennes, Astérisque 129 (1985). MR 87j:14069
  • [25] L. Moret-Bailly, Un probleme de descente, Bull. Soc. Math. France 124 (1996), pp. 209-241. MR 98g:14003
  • [26] D. Mumford, The topology of normal singularities of an algebraic surface and a criterion for simplicity, Publ. Math. I.H.E.S. 9 (1961), pp. 209-241. MR 27:3643
  • [27] P. Norman, An algorithm for computing local moduli of abelian varieties, Annals of Math. 101 (1975), pp. 209-241. MR 52:10757
  • [28] P. Norman, F. Oort, Moduli of abelian varieties, Annals of Math. 112 (1980), pp. 413-439. MR 82h:14026
  • [29] F. Oort, Moduli of abelian varieties and Newton polygons, C. R. Acad. Sci. Paris 312 (1991), Série I, pp. 385-389. MR 92a:14048
  • [30] F. Oort, Newton polygons and formal groups: conjectures by Manin and Grothendieck, Utrecht Preprint 995, January 1997. [To appear]
  • [31] R. S. Pierce, Associative algebras, Grad. Texts Math. 88, Springer - Verlag, 1982. MR 84c:16001
  • [32] N. Saavedra Rivano, Catégories tannakiennes, Lect. Notes Math. 265, Springer - Verlag (1972). MR 49:2769
  • [33] J-P. Serre, Corps Locaux, Hermann (1962). MR 27:133
  • [34] J-P. Serre, Groupes algébriques et corps de classes, Hermann (1975). MR 57:6032
  • [35] J. Tate, $p$-divisible groups, in: Proceedings of a conference on local fields, Driebergen (1966), Springer - Verlag (1967), pp. 209-241. MR 38:155
  • [36] T. Zink, The display of a formal $p$-divisible group, University of Bielefeld, Preprint 98-017, February 1998.
  • [SGA1] A. Grothendieck, Séminaire de Géométrie Algébrique, Revêtement étales et groupe fondamentale, Lect. Notes Math. 224, Springer - Verlag (1971). MR 50:7129
  • [SGA2] A. Grothendieck, Séminaire de Géométrie Algébrique, Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux, Advanced Studies in Pure Math. 2, North-Holland (1968). MR 57:16294
  • [SGA7] A. Grothendieck, Séminaire de Géométrie Algébrique, Groupes de monodromie en géométrie algébrique, Lect. Notes Math. 288, Springer - Verlag (1972). MR 50:7134
  • [EGA] A. Grothendieck, J. Dieudonné, Eléments de géométrie algébrique, Publ. Math. I.H.E.S. 4, 8, 11, 17, 20, 24, 28, 32 (1961-1967). MR 36:177a; MR 36:177b; MR 36:177c; MR 29:1210; MR 30:3885; MR 33:7330; MR 36:178

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 14L05, 14B05

Retrieve articles in all journals with MSC (2000): 14L05, 14B05


Additional Information

A. J. de Jong
Affiliation: Massachusetts Institute of Technology, Department of Mathematics, Building 2, Room 270, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307
Email: dejong@math.mit.edu

F. Oort
Affiliation: Universiteit Utrecht, Mathematisch Instituut, Budapestlaan 6, NL-3508 TA Utrecht, The Netherlands
Email: oort@math.uu.nl

DOI: https://doi.org/10.1090/S0894-0347-99-00322-7
Received by editor(s): October 28, 1998
Received by editor(s) in revised form: July 27, 1999
Published electronically: September 22, 1999
Additional Notes: The research of Dr. A.J. de Jong has been made possible by a fellowship of the Royal Netherlands Academy of Arts and Sciences.
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society