Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 

 

An Eulerian-Lagrangian approach for incompressible fluids: Local theory


Author: Peter Constantin
Journal: J. Amer. Math. Soc. 14 (2001), 263-278
MSC (2000): Primary 76B03, 37K65, 35Q30, 35L65
Published electronically: December 21, 2000
MathSciNet review: 1815212
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract:

We study a formulation of the incompressible Euler equations in terms of the inverse Lagrangian map. In this formulation the equations become a first order advective nonlinear system of partial differential equations.


References [Enhancements On Off] (What's this?)

  • 1. Andrew Majda, Vorticity and the mathematical theory of incompressible fluid flow, Comm. Pure Appl. Math. 39 (1986), no. S, suppl., S187–S220. Frontiers of the mathematical sciences: 1985 (New York, 1985). MR 861488, 10.1002/cpa.3160390711
  • 2. J. T. Beale, T. Kato, and A. Majda, Remarks on the breakdown of smooth solutions for the 3-D Euler equations, Comm. Math. Phys. 94 (1984), no. 1, 61–66. MR 763762
  • 3. H. K. Moffatt, The degree of knotedness of tangled vortex lines, J. Fluid Mech. 35 (1969), 117-129.
  • 4. V. I. Arnol′d and B. A. Khesin, Topological methods in hydrodynamics, Annual review of fluid mechanics, Vol. 24, Annual Reviews, Palo Alto, CA, 1992, pp. 145–166. MR 1145009
  • 5. Alexandre J. Chorin, Vorticity and turbulence, Applied Mathematical Sciences, vol. 103, Springer-Verlag, New York, 1994. MR 1281384
  • 6. Uriel Frisch, Turbulence, Cambridge University Press, Cambridge, 1995. The legacy of A. N. Kolmogorov. MR 1428905
  • 7. James Serrin, Mathematical principles of classical fluid mechanics, Handbuch der Physik (herausgegeben von S. Flügge), Bd. 8/1, Strömungsmechanik I (Mitherausgeber C. Truesdell), Springer-Verlag, Berlin-Göttingen-Heidelberg, 1959, pp. 125–263. MR 0108116
  • 8. M. E. Goldstein, Unsteady vortical and entropic distortion of potential flows round arbitrary obstacles, J. Fluid Mech. 89 (1978), 433-468.
  • 9. M. E. Goldstein, P. A. Durbin, The effect of finite turbulence spatial scale on the amplification of turbulence by a contracting stream, J. Fluid Mech. 98 (1980), 473-508.
  • 10. J. C. R. Hunt, Vorticity and vortex dynamics in complex turbulent flows, Transactions of CSME 11 (1987), 21-35.
  • 11. G. A. Kuzmin, Ideal incompressible hydrodynamics in terms of the vortex momentum density, Phys. Lett. A 96 (1983), 88-90.
  • 12. V. I. Oseledets, A new form of writing out the Navier-Stokes equation. Hamiltonian formalism, Uspekhi Mat. Nauk 44 (1989), no. 3(267), 169–170 (Russian); English transl., Russian Math. Surveys 44 (1989), no. 3, 210–211. MR 1024057, 10.1070/RM1989v044n03ABEH002122
  • 13. Tomas F. Buttke, Velicity methods: Lagrangian numerical methods which preserve the Hamiltonian structure of incompressible fluid flow, Vortex flows and related numerical methods (Grenoble, 1992) NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 395, Kluwer Acad. Publ., Dordrecht, 1993, pp. 39–57. MR 1248421
  • 14. John H. Maddocks and Robert L. Pego, An unconstrained Hamiltonian formulation for incompressible fluid flow, Comm. Math. Phys. 170 (1995), no. 1, 207–217. MR 1331698
  • 15. David G. Ebin and Jerrold Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid., Ann. of Math. (2) 92 (1970), 102–163. MR 0271984
  • 16. Tosio Kato, Nonstationary flows of viscous and ideal fluids in 𝑅³, J. Functional Analysis 9 (1972), 296–305. MR 0481652
  • 17. A. L. Bertozzi and P. Constantin, Global regularity for vortex patches, Comm. Math. Phys. 152 (1993), no. 1, 19–28. MR 1207667
  • 18. Peter Constantin and Jiahong Wu, The inviscid limit for non-smooth vorticity, Indiana Univ. Math. J. 45 (1996), no. 1, 67–81. MR 1406684, 10.1512/iumj.1996.45.1960
  • 19. Peter Constantin, Geometric and analytic studies in turbulence, Trends and perspectives in applied mathematics, Appl. Math. Sci., vol. 100, Springer, New York, 1994, pp. 21–54. MR 1277191, 10.1007/978-1-4612-0859-4_2
  • 20. Peter Constantin, Andrew J. Majda, and Esteban Tabak, Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar, Nonlinearity 7 (1994), no. 6, 1495–1533. MR 1304437
  • 21. Peter Constantin, Charles Fefferman, and Andrew J. Majda, Geometric constraints on potentially singular solutions for the 3-D Euler equations, Comm. Partial Differential Equations 21 (1996), no. 3-4, 559–571. MR 1387460, 10.1080/03605309608821197
  • 22. Koji Ohkitani and Michio Yamada, Inviscid and inviscid-limit behavior of a surface quasigeostrophic flow, Phys. Fluids 9 (1997), no. 4, 876–882. MR 1437554, 10.1063/1.869184
  • 23. D. Cordoba, On the geometry of solutions of the quasi-geostrophic active scalar and Euler equations, Proc. Nat. Acad. Sci. USA 94 (1997), 12769-12770.
  • 24. Peter Constantin, Qing Nie, and Norbert Schörghofer, Nonsingular surface quasi-geostrophic flow, Phys. Lett. A 241 (1998), no. 3, 168–172. MR 1613907, 10.1016/S0375-9601(98)00108-X
  • 25. P. Constantin, An Eulerian-Lagrangian approach to incompressible fluids, http://www. aimath.org/preprints/99/constantin.dvi

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 76B03, 37K65, 35Q30, 35L65

Retrieve articles in all journals with MSC (2000): 76B03, 37K65, 35Q30, 35L65


Additional Information

Peter Constantin
Affiliation: Department of Mathematics, The University of Chicago, Chicago, Illinois 60637-1546
Email: const@cs.uchicago.edu

DOI: http://dx.doi.org/10.1090/S0894-0347-00-00364-7
Keywords: Euler equations, blow up
Received by editor(s): September 27, 1999
Published electronically: December 21, 2000
Article copyright: © Copyright 2000 American Mathematical Society