Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

Locally analytic distributions and $p\/$-adic representation theory, with applications to $GL_{2}$


Authors: Peter Schneider and Jeremy Teitelbaum
Journal: J. Amer. Math. Soc. 15 (2002), 443-468
MSC (2000): Primary 11S80, 22E50
DOI: https://doi.org/10.1090/S0894-0347-01-00377-0
Published electronically: October 18, 2001
MathSciNet review: 1887640
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we study continuous representations of locally $L$-analytic groups $G$ in locally convex $K$-vector spaces, where $L$ is a finite extension of $\mathbb{Q}_p$ and $K$ is a spherically complete nonarchimedean extension field of $L$. The class of such representations includes both the smooth representations of Langlands theory and the finite dimensional algebraic representations of $G$, along with interesting new objects such as the action of $G$ on global sections of equivariant vector bundles on $p$-adic symmetric spaces. We introduce a restricted category of such representations that we call ``strongly admissible'' and we show that, when $G$ is compact, our category is anti-equivalent to a subcategory of the category of modules over the locally analytic distribution algebra of $G$. As an application we prove the topological irreducibility of generic members of the $p$-adic principal series for $GL_2(\mathbb{Q}_p)$. Our hope is that our definition of strongly admissible representation may be used as a foundation for a general theory of continuous $K$-valued representations of locally $L$-analytic groups.


References [Enhancements On Off] (What's this?)

  • [Am1] Amice, Y., Interpolation $p$-adique, Bull. Soc. Math. France 92, 117-180 (1964). MR 32:5638
  • [Am2] Amice, Y., Duals. Proc. Conf. on $p\/$-Adic Analysis, Nijmegen 1978, pp. 1-15. MR 80f:12017
  • [B-GAL] Bourbaki, N., Groupes et algèbres de Lie, Chap. 1-3. Paris: Hermann 1971, 1972. MR 42:6159; MR 58:28083a
  • [B-TVS] Bourbaki, N., Topological Vector Spaces, Berlin-Heidelberg-New York: Springer 1987. MR 88g:46002
  • [B-VAR] Bourbaki, N., Variétés différentielles et analytiques, Fascicule de résultats. Paris: Hermann 1967. MR 36:2161
  • [GKPS] De Grande-De Kimpe, N., Kakol, J., Perez-Garcia, C., Schikhof, W., $p\/$-adic locally convex inductive limits. In $p\/$-Adic Functional Analysis, Proc. Int. Conf. Nijmegen 1996 (Eds. Schikhof, Perez-Garcia, Kakol), Lect. Notes Pure Appl. Math., vol. 192, pp. 159-222. New York: M. Dekker 1997. MR 98i:46077
  • [DG] Demazure, M., Gabriel, P., Groupes Algébriques, Amsterdam: North-Holland 1970. MR 46:1800
  • [Fe1] Féaux de Lacroix, C. T., $p$-adische Distributionen, Diplomarbeit, Köln 1992.
  • [Fe2] Féaux de Lacroix, C. T., Einige Resultate über die topologischen Darstellungen $p$-adischer Liegruppen auf unendlich dimensionalen Vektorräumen über einem $p$-adischen Körper, Thesis, Köln 1997, Schriftenreihe Math. Inst. Univ. Münster, 3. Serie, Heft 23, pp. 1-111 (1999).
  • [Gru] Gruson, L., Théorie de Fredholm $p$-adique, Bull. Soc. Math. France 94, 67-95 (1966). MR 37:1971
  • [Hel] Helmer, O., The elementary divisor theorem for certain rings without chain conditions, Bull. AMS 49, 225-236 (1943). MR 4:185d
  • [Jan] Jantzen, J.C., Representations of Algebraic Groups, Academic Press 1987. MR 89c:20001
  • [Kom] Komatsu, H., Projective and injective limits of weakly compact sequences of locally convex spaces, J. Math. Soc. Japan 19, 366-383 (1967). MR 36:646
  • [Laz] Lazard, M. Les zéros des fonctions analytiques d'une variable sur un corps valué complet, Publ. Math. IHES 14, 47-75 (1962). MR 27:2497
  • [Mor] Morita, Y., Analytic Representations of $SL_{2}$ over a $p\/$-Adic Number Field, III, Adv. Studies Pure Math. 7, pp. 185-222. Tokyo: Kinokuniya 1985. MR 88b:22019
  • [NFA] Schneider, P., Nonarchimedean Functional Analysis, Berlin-Heidelberg-New York: Springer 2001.
  • [Sch] Schneider, P., $p\/$-adic representation theory, The 1999 Britton Lectures at McMaster University. Available at www.uni-muenster.de/math/u/ schneider.
  • [ST] Schneider, P., Teitelbaum, J., $p\/$-adic boundary values, To appear in Astérisque.
  • [Ti1] van Tiel, J., Espaces localement $K$-convexes I-III, Indagationes Math. 27, 249-258, 259-272, 273-289 (1965). MR 31:3841a; MR 31:3841b; MR 32:4523
  • [Ti2] van Tiel, J., Ensembles pseudo-polaires dans les espaces localement $K$-convexes, Indagationes Math. 28, 369-373 (1966). MR 33:6357

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 11S80, 22E50

Retrieve articles in all journals with MSC (2000): 11S80, 22E50


Additional Information

Peter Schneider
Affiliation: Mathematisches Institut, Westfälische Wilhelms-Universität Münster, Einsteinstr. 62, D-48149 Münster, Germany
Email: pschnei@math.uni-muenster.de

Jeremy Teitelbaum
Affiliation: Department of Mathematics, Statistics, and Computer Science (M/C 249), University of Illinois at Chicago, 851 S. Morgan St., Chicago, Illinois 60607
Email: jeremy@uic.edu

DOI: https://doi.org/10.1090/S0894-0347-01-00377-0
Received by editor(s): December 16, 1999
Received by editor(s) in revised form: May 16, 2001
Published electronically: October 18, 2001
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society