Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 

 

Locally analytic distributions and $p\/$-adic representation theory, with applications to $GL_{2}$


Authors: Peter Schneider and Jeremy Teitelbaum
Journal: J. Amer. Math. Soc. 15 (2002), 443-468
MSC (2000): Primary 11S80, 22E50
Published electronically: October 18, 2001
MathSciNet review: 1887640
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we study continuous representations of locally $L$-analytic groups $G$ in locally convex $K$-vector spaces, where $L$ is a finite extension of $\mathbb{Q}_p$ and $K$ is a spherically complete nonarchimedean extension field of $L$. The class of such representations includes both the smooth representations of Langlands theory and the finite dimensional algebraic representations of $G$, along with interesting new objects such as the action of $G$ on global sections of equivariant vector bundles on $p$-adic symmetric spaces. We introduce a restricted category of such representations that we call ``strongly admissible'' and we show that, when $G$ is compact, our category is anti-equivalent to a subcategory of the category of modules over the locally analytic distribution algebra of $G$. As an application we prove the topological irreducibility of generic members of the $p$-adic principal series for $GL_2(\mathbb{Q}_p)$. Our hope is that our definition of strongly admissible representation may be used as a foundation for a general theory of continuous $K$-valued representations of locally $L$-analytic groups.


References [Enhancements On Off] (What's this?)

  • [Am1] Yvette Amice, Interpolation 𝑝-adique, Bull. Soc. Math. France 92 (1964), 117–180 (French). MR 0188199
  • [Am2] Yvette Amice, Duals, Proceedings of the Conference on 𝑝-adic Analysis (Nijmegen, 1978), Report, vol. 7806, Katholieke Univ., Nijmegen, 1978, pp. 1–15. MR 522117
  • [B-GAL] N. Bourbaki, Éléments de mathématique. Fasc. XXVI. Groupes et algèbres de Lie. Chapitre I: Algèbres de Lie, Seconde édition. Actualités Scientifiques et Industrielles, No. 1285, Hermann, Paris, 1971 (French). MR 0271276
    N. Bourbaki, Éléments de mathématique. Fasc. XXXVII. Groupes et algèbres de Lie. Chapitre II: Algèbres de Lie libres. Chapitre III: Groupes de Lie, Hermann, Paris, 1972. Actualités Scientifiques et Industrielles, No. 1349. MR 0573068
  • [B-TVS] N. Bourbaki, Topological vector spaces. Chapters 1–5, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 1987. Translated from the French by H. G. Eggleston and S. Madan. MR 910295
  • [B-VAR] N. Bourbaki, Éléments de mathématique. Fasc. XXXIII. Variétés différentielles et analytiques. Fascicule de résultats (Paragraphes 1 à 7), Actualités Scientifiques et Industrielles, No. 1333, Hermann, Paris, 1967 (French). MR 0219078
  • [GKPS] N. De Grande-De Kimpe, J. Kakol, C. Perez-Garcia, and W. H. Schikhof, 𝑝-adic locally convex inductive limits, 𝑝-adic functional analysis (Nijmegen, 1996) Lecture Notes in Pure and Appl. Math., vol. 192, Dekker, New York, 1997, pp. 159–222. MR 1459211
  • [DG] Michel Demazure and Pierre Gabriel, Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs, Masson & Cie, Éditeur, Paris; North-Holland Publishing Co., Amsterdam, 1970 (French). Avec un appendice Corps de classes local par Michiel Hazewinkel. MR 0302656
  • [Fe1] Féaux de Lacroix, C. T., $p$-adische Distributionen, Diplomarbeit, Köln 1992.
  • [Fe2] Féaux de Lacroix, C. T., Einige Resultate über die topologischen Darstellungen $p$-adischer Liegruppen auf unendlich dimensionalen Vektorräumen über einem $p$-adischen Körper, Thesis, Köln 1997, Schriftenreihe Math. Inst. Univ. Münster, 3. Serie, Heft 23, pp. 1-111 (1999).
  • [Gru] Laurent Gruson, Théorie de Fredholm 𝑝-adique, Bull. Soc. Math. France 94 (1966), 67–95 (French). MR 0226381
  • [Hel] Olaf Helmer, The elementary divisor theorem for certain rings without chain condition, Bull. Amer. Math. Soc. 49 (1943), 225–236. MR 0007744, 10.1090/S0002-9904-1943-07886-X
  • [Jan] Jens Carsten Jantzen, Representations of algebraic groups, Pure and Applied Mathematics, vol. 131, Academic Press, Inc., Boston, MA, 1987. MR 899071
  • [Kom] Hikosaburo Komatsu, Projective and injective limits of weakly compact sequences of locally convex spaces, J. Math. Soc. Japan 19 (1967), 366–383. MR 0217557
  • [Laz] Michel Lazard, Les zéros des fonctions analytiques d’une variable sur un corps valué complet, Inst. Hautes Études Sci. Publ. Math. 14 (1962), 47–75 (French). MR 0152519
  • [Mor] Yasuo Morita, Analytic representations of 𝑆𝐿₂ over a 𝔭-adic number field. III, Automorphic forms and number theory (Sendai, 1983) Adv. Stud. Pure Math., vol. 7, North-Holland, Amsterdam, 1985, pp. 185–222. MR 876106
  • [NFA] Schneider, P., Nonarchimedean Functional Analysis, Berlin-Heidelberg-New York: Springer 2001.
  • [Sch] Schneider, P., $p\/$-adic representation theory, The 1999 Britton Lectures at McMaster University. Available at www.uni-muenster.de/math/u/ schneider.
  • [ST] Schneider, P., Teitelbaum, J., $p\/$-adic boundary values, To appear in Astérisque.
  • [Ti1] J. van Tiel, Espaces localement 𝐾-convexes. I, Nederl. Akad. Wetensch. Proc. Ser. A 68 = Indag. Math. 27 (1965), 249–258 (French). MR 0179593
    J. van Tiel, Espaces localement 𝐾-convexes. II, Nederl. Akad. Wetensch. Proc. Ser. A 68 = Indag. Math. 27 (1965), 259–272 (French). MR 0179594
    J. van Tiel, Espaces localement 𝐾-convexes. III, Nederl. Akad. Wetensch. Proc. Ser. A 68=Indag. Math. 27 (1965), 273–289 (French). MR 0187068
  • [Ti2] J. van Tiel, Ensembles pseudo-polaires dans les espaces localement 𝐾-convexes, Nederl. Akad. Wetensch. Proc. Ser. A 69=Indag. Math. 28 (1966), 369–373 (French). MR 0198198

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 11S80, 22E50

Retrieve articles in all journals with MSC (2000): 11S80, 22E50


Additional Information

Peter Schneider
Affiliation: Mathematisches Institut, Westfälische Wilhelms-Universität Münster, Einsteinstr. 62, D-48149 Münster, Germany
Email: pschnei@math.uni-muenster.de

Jeremy Teitelbaum
Affiliation: Department of Mathematics, Statistics, and Computer Science (M/C 249), University of Illinois at Chicago, 851 S. Morgan St., Chicago, Illinois 60607
Email: jeremy@uic.edu

DOI: http://dx.doi.org/10.1090/S0894-0347-01-00377-0
Received by editor(s): December 16, 1999
Received by editor(s) in revised form: May 16, 2001
Published electronically: October 18, 2001
Article copyright: © Copyright 2001 American Mathematical Society