General elephants of three-fold divisorial contractions

Author:
Masayuki Kawakita

Journal:
J. Amer. Math. Soc. **16** (2003), 331-362

MSC (2000):
Primary 14E05, 14E30

DOI:
https://doi.org/10.1090/S0894-0347-02-00416-2

Published electronically:
December 2, 2002

MathSciNet review:
1949163

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We treat three-fold divisorial contractions whose exceptional divisors contract to Gorenstein points. We prove that a general element in the anti-canonical system around the exceptional divisor has at worst Du Val singularities. As application to classification, we describe divisorial contractions to compound points, and moreover, we deduce that any divisorial contraction to a compound or point has discrepancy .

**1.**M. Artin, On the solutions of analytic equations, Invent. Math.**5**(1968), 277-291. MR**38:344****2.**-, Algebraic approximation of structures over complete local rings, Publ. Math. Inst. Hautes Étud. Sci.**36**(1969), 23-58. MR**42:3087****3.**A. Corti, Singularities of linear systems and -fold birational geometry,*Explicit birational geometry of -folds*, Lond. Math. Soc. Lect. Note Ser.**281**(2000), 259-312. MR**2001k:14041****4.**A. Corti and M. Mella, Birational geometry of terminal quartic -folds I, preprint (2000).**5.**S. Cutkosky, Elementary contractions of Gorenstein threefolds, Math. Ann.**280**(1988), 521-525. MR**89k:14070****6.**T. Hayakawa, Blowing ups of -dimensional terminal singularities, Publ. Res. Ins. Math. Sci.**35**(1999), 515-570. MR**2002a:14038****7.**M. Kawakita, Divisorial contractions in dimension three which contract divisors to smooth points, Invent. Math.**145**(2001), 105-119. MR**2002h:14025****8.**-, Divisorial contractions in dimension three which contract divisors to compound points, Compos. Math.**133**(2002), 95-116.**9.**Y. Kawamata, Divisorial contractions to -dimensional terminal quotient singularities,*Higher-dimensional complex varieties*, de Gruyter (1996), 241-246. MR**98g:14005****10.**Y. Kawamata, K. Matsuda and K. Matsuki, Introduction to the minimal model problem, Adv. Stud. Pure Math.**10**(1987), 283-360. MR**89e:14015****11.**J. Kollár and S. Mori, Classification of three-dimensional flips, J. Am. Math. Soc.**5**(1992), 533-703. MR**93i:14015****12.**-,*Birational geometry of algebraic varieties*, Camb. Tracts Math.**134**(1998). MR**2000b:14018****13.**J. Kollár and N. Shepherd-Barron, Threefolds and deformations of surface singularities, Invent. Math.**91**(1988), 299-338. MR**88m:14022****14.**D. Markushevich, Minimal discrepancy for a terminal cDV singularity is , J. Math. Sci. Tokyo**3**(1996), 445-456. MR**97k:14018****15.**S. Mori, Threefolds whose canonical bundles are not numerically effective, Ann. Math.**116**(1982), 133-176. MR**84e:14032****16.**-, On -dimensional terminal singularities, Nagoya Math. J.**98**(1985), 43-66. MR**86m:14003****17.**-, Flip theorem and the existence of minimal models for -folds, J. Am. Math. Soc.**1**(1988), 117-253. MR**89a:14048****18.**M. Reid, Minimal models of canonical -folds, Adv. Stud. Pure Math.**1**(1983), 131-180. MR**86a:14010****19.**-, Projective morphisms according to Kawamata, preprint (1983).**20.**-, Young person's guide to canonical singularities, Proc. Symp. Pure Math.**46**(1987), 345-414. MR**89b:14016****21.**V. Shokurov, Smoothness of a general anticanonical divisor on a Fano variety, Izv. Akad. Nauk SSSR Ser. Mat.**43**(1979), 430-441. MR**80h:14020****22.**H. Takagi, On classification of -Fano -folds of Gorenstein index II, Nagoya Math. J.**167**(2002), 157-216.

Retrieve articles in *Journal of the American Mathematical Society*
with MSC (2000):
14E05,
14E30

Retrieve articles in all journals with MSC (2000): 14E05, 14E30

Additional Information

**Masayuki Kawakita**

Affiliation:
Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8914, Japan

Email:
kawakita@ms.u-tokyo.ac.jp

DOI:
https://doi.org/10.1090/S0894-0347-02-00416-2

Keywords:
General elephant,
divisorial contraction

Received by editor(s):
October 22, 2001

Received by editor(s) in revised form:
September 4, 2002

Published electronically:
December 2, 2002

Article copyright:
© Copyright 2002
American Mathematical Society