Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

Multivariable cochain operations and little $n$-cubes


Authors: James E. McClure and Jeffrey H. Smith
Journal: J. Amer. Math. Soc. 16 (2003), 681-704
MSC (2000): Primary 18D50; Secondary 55P48, 16E40
DOI: https://doi.org/10.1090/S0894-0347-03-00419-3
Published electronically: January 3, 2003
MathSciNet review: 1969208
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we construct a small $E_\infty$ chain operad $\mathcal{S}$ which acts naturally on the normalized cochains $S^*X$ of a topological space. We also construct, for each $n$, a suboperad $\mathcal{S}_n$ which is quasi-isomorphic to the normalized singular chains of the little $n$-cubes operad. The case $n=2$ leads to a substantial simplification of our earlier proof of Deligne's Hochschild cohomology conjecture.


References [Enhancements On Off] (What's this?)

  • 1. Benson, D.J., Representations and Cohomology II: Cohomology of Groups and Modules. Cambridge University Press 1991. MR 93g:20099
  • 2. Berger, C., Combinatorial models for real configuration spaces and $E_n$-operads. Operads: Proceedings of Renaissance Conferences (Hartford, CT/Luminy, 1995), 37-52, Contemp. Math., 202, Amer. Math. Soc., Providence, RI, 1997. MR 98j:18014
  • 3. Berger, C. and Fresse, B., Combinatorial operad actions on cochains. Preprint available at http://front.math.ucdavis.edu/math.AT/0109158
  • 4. Boardman, J.M. and Vogt, R.M., Homotopy-everything $H$-spaces. Bull. Amer. Math. Soc. 74 (1968), 1117-1122. MR 38:5215
  • 5. Deligne, P., Letter to Stasheff et al. May 17, 1993.
  • 6. Dold, A., Über die Steenrodschen Kohomologieoperationen. Annals of Math. (2) 73 (1961), 258-294. MR 23:A646
  • 7. Dold, A., Lectures on Algebraic Topology. Springer-Verlag, Berlin-New York, 1972. MR 54:3685
  • 8. Getzler, E., Cartan homotopy formulas and the Gauss-Manin connection in cyclic homology. Quantum deformations of algebras and their representations (Ramat-Gan, 1991/1992; Rehovot, 1991/1992), 65-78, Israel Math. Conf. Proc., 7, Bar-Ilan Univ., Ramat Gan, 1993. MR 95c:19002
  • 9. Hinich, V.A. and Schechtman, V.V., On homotopy limit of homotopy algebras. $K$-theory, arithmetic and geometry (Moscow, 1984-1986), 240-264, Lecture Notes in Mathematics, Volume 1289, Springer-Verlag, Berlin-New York, 1987. MR 89d:55052
  • 10. Hirschhorn, P., Model Categories and Their Localizations. Preprint available at http://www-math.mit.edu/$\sim$psh/
  • 11. Kadeishvili, T., The structure of the $A(\infty)$-algebra, and the Hochschild and Harrison cohomologies. Trudy Tbiliss. Mat. Inst. Razmadze Akad. Nauk Gruzin. SSR 91 (1988), 19-27. MR 91a:18016
  • 12. Kontsevich, M., Operads and Motives in Deformation Quantization. Lett. Math. Phys. 48 (1999), 35-72 MR 2000j:53119
  • 13. Kontsevich, M. and Soibelman, Y., Deformations of algebras over operads and the Deligne conjecture. Conférence Moshé Flato 1999, Volume I, 255-307, Math. Phys. Stud. 22, Kluwer Acad. Publ., Dordrecht, 2000. MR 2002e:18012
  • 14. Kriz, I. and May, J.P., Operads, algebras, modules and motives. Asterisque 233 (1995). MR 96j:18006
  • 15. Mandell, M. A., $E_\infty$ algebras and $p$-adic homotopy theory. Topology 40 (2001), 43-94. MR 2001m:55025
  • 16. May, J.P., The geometry of iterated loop spaces. Lectures Notes in Mathematics, Volume 271. Springer-Verlag, Berlin-New York, 1972. MR 54:8623b
  • 17. McClure, J.E. and Smith, J.H., A solution of Deligne's Hochschild cohomology conjecture. Proceedings of the JAMI conference on Homotopy Theory. Contemp. Math. 293 (2002), 153-193.
  • 18. McClure, J.E. and Smith J.H., Cosimplicial objects and little $n$-cubes. I. Preprint available at http://front.math.ucdavis.edu/math.QA/0211368
  • 19. Smith, J.H., Simplicial group models for $\Omega^n S^n X$. Israel J. Math. 66 (1989), 330-350. MR 91e:55014
  • 20. Steenrod, N.E., Products of cocycles and extensions of mappings. Annals of Mathematics (2) 48 (1947), 290-320. MR 9:154a
  • 21. Tamarkin, D., Another proof of M. Kontsevich formality theorem. Preprint available at http://front.math.ucdavis.edu/math.QA/9803025
  • 22. Tamarkin, D., Formality of Chain Operad of Small Squares. Preprint available at http://front.math.ucdavis.edu/math.QA/9809164
  • 23. Voronov, A., Homotopy Gerstenhaber algebras. Conférence Moshé Flato 1999, Volume II, 307-331, Math. Phys. Stud. 22, Kluwer Acad. Publ., Dordrecht, 2000. MR 2002d:55009

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 18D50, 55P48, 16E40

Retrieve articles in all journals with MSC (2000): 18D50, 55P48, 16E40


Additional Information

James E. McClure
Affiliation: Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, Indiana 47907-2067
Email: mcclure@math.purdue.edu

Jeffrey H. Smith
Affiliation: Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, Indiana 47907-2067
Email: jhs@math.purdue.edu

DOI: https://doi.org/10.1090/S0894-0347-03-00419-3
Received by editor(s): June 25, 2001
Received by editor(s) in revised form: June 28, 2002
Published electronically: January 3, 2003
Additional Notes: The first author was partially supported by NSF grant DMS-9971953. He thanks the Lord for making his work possible
The second author was partially supported by NSF grant DMS-9971953
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society