A monotonicity formula on complete Kähler manifolds with nonnegative bisectional curvature

Author:
Lei Ni

Journal:
J. Amer. Math. Soc. **17** (2004), 909-946

MSC (2000):
Primary 58J35, 53C55

DOI:
https://doi.org/10.1090/S0894-0347-04-00465-5

Published electronically:
August 27, 2004

MathSciNet review:
2083471

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we derive a new monotonicity formula for the plurisubharmonic functions/positive (1,1) currents on complete Kähler manifolds with nonnegative bisectional curvature. As applications we derive the sharp estimates for the dimension of the spaces of holomorphic functions (sections) with polynomial growth, which, in particular, partially solve a conjecture of Yau.

The methods used in this paper, without the assumption of maximum volume of growth, as observed recently by Chen, Fu, Yin, and Zhu, provide a complete solution to Yau's conjecture.

**[AT]**Aldo Andreotti and Giuseppe Tomassini,*Some remarks on pseudoconcave manifolds*, Essays on Topology and Related Topics (Mémoires dédiés à Georges de Rham), Springer, New York, 1970, pp. 85–104. MR**0265632****[AV]**Aldo Andreotti and Edoardo Vesentini,*Carleman estimates for the Laplace-Beltrami equation on complex manifolds*, Inst. Hautes Études Sci. Publ. Math.**25**(1965), 81–130. MR**0175148****[B]**Enrico Bombieri,*Algebraic values of meromorphic maps*, Invent. Math.**10**(1970), 267–287. MR**0306201**, https://doi.org/10.1007/BF01418775**[BG]**R. L. Bishop and S. I. Goldberg,*On the second cohomology group of a Kaehler manifold of positive curvature*, Proc. Amer. Math. Soc.**16**(1965), 119–122. MR**0172221**, https://doi.org/10.1090/S0002-9939-1965-0172221-6**[Co]**Huai Dong Cao,*On Harnack’s inequalities for the Kähler-Ricci flow*, Invent. Math.**109**(1992), no. 2, 247–263. MR**1172691**, https://doi.org/10.1007/BF01232027**[CFYZ]**B. Chen, X. Fu, L. Yin and X-P. Zhu,*Sharp dimension estimates of holomorphic functions and rigidity, arXiv.math.DG/0311164*.**[CY]**S. Y. Cheng and S. T. Yau,*Differential equations on Riemannian manifolds and their geometric applications*, Comm. Pure Appl. Math.**28**(1975), no. 3, 333–354. MR**0385749**, https://doi.org/10.1002/cpa.3160280303**[C]**Bennett Chow,*Interpolating between Li-Yau’s and Hamilton’s Harnack inequalities on a surface*, J. Partial Differential Equations**11**(1998), no. 2, 137–140. MR**1626999****[CH]**Bennett Chow and Richard S. Hamilton,*Constrained and linear Harnack inequalities for parabolic equations*, Invent. Math.**129**(1997), no. 2, 213–238. MR**1465325**, https://doi.org/10.1007/s002220050162**[CN]**B. Chow and L. Ni,*A new matrix LYH estimate for Kähler-Ricci flow and the interpolation with entropy monotonicity*, in preparation.**[CM]**Tobias H. Colding and William P. Minicozzi II,*Weyl type bounds for harmonic functions*, Invent. Math.**131**(1998), no. 2, 257–298. MR**1608571**, https://doi.org/10.1007/s002220050204**[D]**Jean-Pierre Demailly,*𝐿² vanishing theorems for positive line bundles and adjunction theory*, Transcendental methods in algebraic geometry (Cetraro, 1994) Lecture Notes in Math., vol. 1646, Springer, Berlin, 1996, pp. 1–97. MR**1603616**, https://doi.org/10.1007/BFb0094302**[Dn]**S. Donaldson,*Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles*, Proc. London Math. Soc. (3)**50**(1985), no. 1, 1-26. MR**0765366 (86h:58038)****[Do]**Harold Donnelly,*Harmonic functions on manifolds of nonnegative Ricci curvature*, Internat. Math. Res. Notices**8**(2001), 429–434. MR**1827086**, https://doi.org/10.1155/S1073792801000216**[GH]**P. Griffiths and J. Harris,*Principles of Algebraic Geometry*, John Wiley and Sons, 1978. MR**0507725 (80b:14001)****[GW]**R. E. Greene and H. Wu,*Analysis on noncompact Kähler manifolds*, Several complex variables (Proc. Sympos. Pure Math., Vol. XXX, Part 2, Williams Coll., Williamstown, Mass., 1975) Amer. Math. Soc., Providence, R.I., 1977, pp. 69–100. MR**0460699****[H]**Richard S. Hamilton,*The Harnack estimate for the Ricci flow*, J. Differential Geom.**37**(1993), no. 1, 225–243. MR**1198607****[Ho]**Lars Hörmander,*An introduction to complex analysis in several variables*, 3rd ed., North-Holland Mathematical Library, vol. 7, North-Holland Publishing Co., Amsterdam, 1990. MR**1045639****[HS]**G. Huisken and C. Sinestrari,*Surgeries on mean curvature flow of hypersurfaces*, work in progress.**[KL]**L. Karp and P. Li,*The heat equation on complete Riemannian manifolds*, unpublished.**[KM]**James Morrow and Kunihiko Kodaira,*Complex manifolds*, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1971. MR**0302937****[L1]**Peter Li,*Harmonic functions of linear growth on Kähler manifolds with nonnegative Ricci curvature*, Math. Res. Lett.**2**(1995), no. 1, 79–94. MR**1312979**, https://doi.org/10.4310/MRL.1995.v2.n1.a8**[L2]**Peter Li,*Curvature and function theory on Riemannian manifolds*, Surveys in differential geometry, Surv. Differ. Geom., vol. 7, Int. Press, Somerville, MA, 2000, pp. 375–432. MR**1919432**, https://doi.org/10.4310/SDG.2002.v7.n1.a13**[LS]**P. Li and R. Schoen,*and mean value properties of subharmonic functions on Riemannian manifolds*, Acta Math.**153**(1984), 279-301. MR**0766266 (86j:58147)****[LT1]**P. Li and L.-F. Tam,*Linear growth harmonic functions on a complete manifold*, J. Differential Geom.**29**(1989), 421-425. MR**0982183 (90a:58202)****[LT2]**Peter Li and Luen-Fai Tam,*Complete surfaces with finite total curvature*, J. Differential Geom.**33**(1991), no. 1, 139–168. MR**1085138****[LTW]**Peter Li, Luen-Fai Tam, and Jiaping Wang,*Sharp bounds for the Green’s function and the heat kernel*, Math. Res. Lett.**4**(1997), no. 4, 589–602. MR**1470428**, https://doi.org/10.4310/MRL.1997.v4.n4.a13**[LW]**Peter Li and Jiaping Wang,*Counting massive sets and dimensions of harmonic functions*, J. Differential Geom.**53**(1999), no. 2, 237–278. MR**1802723****[LY]**P. Li and S. T. Yau,*On the parabolic kernel of the Schrödinger operator*, Acta Math.**156**(1986), 139-168. MR**0834612 (87f:58156)****[M]**N. Mok,*An embedding theorem of complete Kähler manifolds of positive bisectional curvature onto affine algebraic varieties*, Bull. Soc. Math. France**112**(1984), 197-250. MR**0788968 (87a:53103)****[MSY]**N. Mok, Y.T. Siu and S. T. Yau,*The Poincaré-Lelong equation on complete Kähler manifolds*, Compositio Math.**44**(1981), 183-218. MR**0662462 (84g:32011)****[N1]**Lei Ni,*The Poisson equation and Hermitian-Einstein metrics on holomorphic vector bundles over complete noncompact Kähler manifolds*, Indiana Univ. Math. J.**51**(2002), no. 3, 679–704. MR**1911050**, https://doi.org/10.1512/iumj.2002.51.2175**[N2]**L. Ni,*Monotonicity and Kähler-Ricci flow*, to appear in Contemp. Math., arXiv: math.DG/ 0211214.**[N3]**Lei Ni,*The entropy formula for linear heat equation*, J. Geom. Anal.**14**(2004), no. 1, 87–100. MR**2030576**, https://doi.org/10.1007/BF02921867**[N4]**Lei Ni,*Hermitian harmonic maps from complete Hermitian manifolds to complete Riemannian manifolds*, Math. Z.**232**(1999), no. 2, 331–355. MR**1718630**, https://doi.org/10.1007/s002090050518**[NR]**Terrence Napier and Mohan Ramachandran,*The 𝐿²\overline∂-method, weak Lefschetz theorems, and the topology of Kähler manifolds*, J. Amer. Math. Soc.**11**(1998), no. 2, 375–396. MR**1477601**, https://doi.org/10.1090/S0894-0347-98-00257-4**[NST]**Lei Ni, Yuguang Shi, and Luen-Fai Tam,*Poisson equation, Poincaré-Lelong equation and curvature decay on complete Kähler manifolds*, J. Differential Geom.**57**(2001), no. 2, 339–388. MR**1879230****[NT1]**Lei Ni and Luen-Fai Tam,*Plurisubharmonic functions and the Kähler-Ricci flow*, Amer. J. Math.**125**(2003), no. 3, 623–654. MR**1981036****[NT2]**Lei Ni and Luen-Fai Tam,*Plurisubharmonic functions and the structure of complete Kähler manifolds with nonnegative curvature*, J. Differential Geom.**64**(2003), no. 3, 457–524. MR**2032112****[P]**G. Perelman,*The entropy formula for the Ricci flow and its geometric applications*, arXiv: math.DG/ 0211159.**[S]**Igor R. Shafarevich,*Basic algebraic geometry. 2*, 2nd ed., Springer-Verlag, Berlin, 1994. Schemes and complex manifolds; Translated from the 1988 Russian edition by Miles Reid. MR**1328834****[Si]**Yum Tong Siu,*Pseudoconvexity and the problem of Levi*, Bull. Amer. Math. Soc.**84**(1978), no. 4, 481–512. MR**0477104**, https://doi.org/10.1090/S0002-9904-1978-14483-8**[W]**H. Wu,*Polynomial functions on complete Kähler manifolds*, Several complex variables and complex geometry, Part 2 (Santa Cruz, CA, 1989) Proc. Sympos. Pure Math., vol. 52, Amer. Math. Soc., Providence, RI, 1991, pp. 601–610. MR**1128575****[Y]**S. T. Yau,*Open problems in geometry*, Lectures on Differential Geometry, by Schoen and Yau**1**(1994), 365-404.**[ZS]**Oscar Zariski and Pierre Samuel,*Commutative algebra. Vol. 1*, Springer-Verlag, New York-Heidelberg-Berlin, 1975. With the cooperation of I. S. Cohen; Corrected reprinting of the 1958 edition; Graduate Texts in Mathematics, No. 28. MR**0384768**

Retrieve articles in *Journal of the American Mathematical Society*
with MSC (2000):
58J35,
53C55

Retrieve articles in all journals with MSC (2000): 58J35, 53C55

Additional Information

**Lei Ni**

Affiliation:
Department of Mathematics, University of California, San Diego, La Jolla, Californiz 92093

Email:
lni@math.ucsd.edu

DOI:
https://doi.org/10.1090/S0894-0347-04-00465-5

Keywords:
Monotonicity formula,
holomorphic functions of polynomial growth,
heat equation deformation of plurisubharmonic functions

Received by editor(s):
July 22, 2003

Published electronically:
August 27, 2004

Additional Notes:
The author’s research was partially supported by NSF grant DMS-0328624, USA

Article copyright:
© Copyright 2004
by the author. All rights reserved.