Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)



A monotonicity formula on complete Kähler manifolds with nonnegative bisectional curvature

Author: Lei Ni
Journal: J. Amer. Math. Soc. 17 (2004), 909-946
MSC (2000): Primary 58J35, 53C55
Published electronically: August 27, 2004
MathSciNet review: 2083471
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we derive a new monotonicity formula for the plurisubharmonic functions/positive (1,1) currents on complete Kähler manifolds with nonnegative bisectional curvature. As applications we derive the sharp estimates for the dimension of the spaces of holomorphic functions (sections) with polynomial growth, which, in particular, partially solve a conjecture of Yau.

The methods used in this paper, without the assumption of maximum volume of growth, as observed recently by Chen, Fu, Yin, and Zhu, provide a complete solution to Yau's conjecture.

References [Enhancements On Off] (What's this?)

  • [AT] A. Andreotti and G. Tomassini, Some remarks on pseudoconcave manifolds, 1970 Essays on Topology and Related Topics (Memoires dédiés à Georges de Rham) pp. 85-104 Springer, New York. MR 0265632 (42:541)
  • [AV] A. Andreotti and E. Vesentini, Carleman estimates for the Laplace-Beltrami equation on complex manifolds, Inst. Hautes Études Sci. Publ. Math. 25 (1965), 81-130. MR 0175148 (30:5333)
  • [B] E. Bombieri, Algebraic Values of Meromorphic Maps, Invent. Math. 10 (1970), 267-287. MR 0306201 (46:5328)
  • [BG] R. L. Bishop and S. I. Goldberg, On the second cohomology group of a Kähler manifold of positive curvature, Proceedings of AMS. 16 (1965), 119-122. MR 0172221 (30:2441)
  • [Co] H.-D. Cao, On Harnack inequalities for the Kähler-Ricci flow, Invent. Math. 109 (1992), 247-263. MR 1172691 (93f:58227)
  • [CFYZ] B. Chen, X. Fu, L. Yin and X-P. Zhu, Sharp dimension estimates of holomorphic functions and rigidity, arXiv.math.DG/0311164.
  • [CY] S. Y. Cheng and S. T. Yau, Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math. 28 (1975), 333-354. MR 0385749 (52:6608)
  • [C] B. Chow, Interpolating between Li-Yau's and Hamilton's Harnack inequalities on a surface, J. Partial Differential Equations 11 (1998), no. 2, 137-140. MR 1626999 (99h:58182)
  • [CH] B. Chow and R. Hamilton, Constrained and linear Harnack inequalities for parabolic equations, Invent. Math. 129 (1997), 213-238. MR 1465325 (98i:53051)
  • [CN] B. Chow and L. Ni, A new matrix LYH estimate for Kähler-Ricci flow and the interpolation with entropy monotonicity, in preparation.
  • [CM] T. Colding and W. Minicozzi, Weyl type bounds for harmonic functions, Invent. Math. 131 (1998), 257-298. MR 1608571 (99b:53052)
  • [D] J.-P. Demailly, $L^{2}$ vanishing theorems for positive line bundles and adjunction theory, Transcendental Methods in Algebraic Geometry, CIME, Cetrro, 1994, Lecture Notes in Math. 1646, Springer-Verlag, 1996. MR 1603616 (99k:32051)
  • [Dn] S. Donaldson, Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles, Proc. London Math. Soc. (3) 50 (1985), no. 1, 1-26. MR 0765366 (86h:58038)
  • [Do] H. Donnelly, Harmonic functions on manifolds of nonnegative Ricci curvature, Internat. Math. Res. Notices 8 (2001), 429-434. MR 1827086 (2002k:53062)
  • [GH] P. Griffiths and J. Harris, Principles of Algebraic Geometry, John Wiley and Sons, 1978. MR 0507725 (80b:14001)
  • [GW] R. E. Greene and H. Wu, Analysis on noncompact Kähler manifolds, Proc. Sympos. Pure Math. 30 (1977), 69-100. MR 0460699 (57:692)
  • [H] R. Hamilton, The Harnack estimate for the Ricci flow, J. Differential Geom. 37 (1993), 225-243. MR 1198607 (93k:58052)
  • [Ho] L. Hörmander, An Introduction to Complex Analysis in Several Variables, 3rd Edition, North Holland, 1990. MR 1045639 (91a:32001)
  • [HS] G. Huisken and C. Sinestrari, Surgeries on mean curvature flow of hypersurfaces, work in progress.
  • [KL] L. Karp and P. Li, The heat equation on complete Riemannian manifolds, unpublished.
  • [KM] K. Kodaira and J. Morrow, Complex Manifolds, Holt, Rinehart and Winston, Inc. 1971. MR 0302937 (46:2080)
  • [L1] P. Li, Harmonic functions of linear growth on Kähler manifolds with nonnegative Ricci curvature, Math. Res. Lett. 2 (1995), 79-94. MR 1312979 (95m:53057)
  • [L2] P. Li, Curvature and function theory on Riemannian manifolds, Survey in Differential Geometry vol. VII, International Press, Cambridge, 2000, 71-111. MR 1919432 (2003g:53047)
  • [LS] P. Li and R. Schoen, $L^{p}$ and mean value properties of subharmonic functions on Riemannian manifolds, Acta Math. 153 (1984), 279-301. MR 0766266 (86j:58147)
  • [LT1] P. Li and L.-F. Tam, Linear growth harmonic functions on a complete manifold, J. Differential Geom. 29 (1989), 421-425. MR 0982183 (90a:58202)
  • [LT2] P. Li and L.-F. Tam, Complete surfaces with finite total curvature, J. Differential Geom. 33 (1991), 139-168. MR 1085138 (92e:53051)
  • [LTW] P. Li, L.-F. Tam and J. Wang, Sharp bounds for Green's functions and the heat kernel, Math. Res. Letters 4 (1997), 589-602. MR 1470428 (98j:58110)
  • [LW] P. Li and J. Wang, Counting massive sets and dimensions of harmonic functions, J. Differential Geom. 53 (1999), 237-278. MR 1802723 (2001k:53063)
  • [LY] P. Li and S. T. Yau, On the parabolic kernel of the Schrödinger operator, Acta Math. 156 (1986), 139-168. MR 0834612 (87f:58156)
  • [M] N. Mok, An embedding theorem of complete Kähler manifolds of positive bisectional curvature onto affine algebraic varieties, Bull. Soc. Math. France 112 (1984), 197-250. MR 0788968 (87a:53103)
  • [MSY] N. Mok, Y.T. Siu and S. T. Yau, The Poincaré-Lelong equation on complete Kähler manifolds, Compositio Math. 44 (1981), 183-218. MR 0662462 (84g:32011)
  • [N1] L. Ni, The Poisson equation and Hermitian-Einstein metrics on complete Kähler manifolds, Indiana Univ. Math. J. 51 (2002), 679-704. MR 1911050 (2003m:32021)
  • [N2] L. Ni, Monotonicity and Kähler-Ricci flow, to appear in Contemp. Math., arXiv: math.DG/ 0211214.
  • [N3] L. Ni, The entropy formula for linear heat equation, Jour. Geom. Anal. 14 (2004), 85-98. MR 2030576
  • [N4] L. Ni, Hermitian harmonic maps from complete Hermitian manifolds to complete Riemannian manifolds, Math. Z. 232 (1999), 331-355. MR 1718630 (2001b:58031)
  • [NR] T. Napier and M. Ramanchandran, The $L^{2}\, {\bar \partial}$-method, weak Lefschetz theorems, and the topology of Kähler manifolds, Jour. AMS. 11 (1998), 375-396. MR 1477601 (99a:32008)
  • [NST] L. Ni, Y. Shi and L.-F. Tam, Poisson equation, Poincaré-Lelong equation and curvature decay on complete Kähler manifolds, J. Differential Geom. 57 (2001), 339-388. MR 1879230 (2002j:53042)
  • [NT1] L. Ni and L.-F. Tam, Plurisubharmonic functions and the Kähler-Ricci flow, Amer. J. Math. 125 (2003), 623-654. MR 1981036 (2004c:53101)
  • [NT2] L. Ni and L.-F.Tam, Plurisubharmonic functions and the structure of complete Kähler manifolds with nonnegative curvature, J. Differential Geom. 64 (2003), 457-524. MR 2032112
  • [P] G. Perelman, The entropy formula for the Ricci flow and its geometric applications, arXiv: math.DG/ 0211159.
  • [S] I. Shafarevich, Basic Algebraic Geometry, Vol II, Springer, 1994, Berlin. MR 1328834 (95m:14002)
  • [Si] Y.-T. Siu, Pseudoconvexity and the problem of Levi, Bull. Amer. Math. Soc. 84 (1978), 481-512. MR 0477104 (57:16648)
  • [W] H. Wu, Polynomial functions on complete Kähler manifolds, Several complex variables and complex geometry, Proc. Symp. Pure Math. 52 (1989), 601-610. MR 1128575 (92g:32017)
  • [Y] S. T. Yau, Open problems in geometry, Lectures on Differential Geometry, by Schoen and Yau 1 (1994), 365-404.
  • [ZS] O. Zariski and P. Samuel, Commutative Algebra I, Graduate Texts in Math. Springer, 1958, New York.MR 0384768 (52:5641)

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 58J35, 53C55

Retrieve articles in all journals with MSC (2000): 58J35, 53C55

Additional Information

Lei Ni
Affiliation: Department of Mathematics, University of California, San Diego, La Jolla, Californiz 92093

Keywords: Monotonicity formula, holomorphic functions of polynomial growth, heat equation deformation of plurisubharmonic functions
Received by editor(s): July 22, 2003
Published electronically: August 27, 2004
Additional Notes: The author’s research was partially supported by NSF grant DMS-0328624, USA
Article copyright: © Copyright 2004 by the author. All rights reserved.

American Mathematical Society