Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Journal of the American Mathematical Society
Journal of the American Mathematical Society
ISSN 1088-6834(online) ISSN 0894-0347(print)

 

Simple Hironaka resolution in characteristic zero


Author: Jaroslaw Wlodarczyk
Journal: J. Amer. Math. Soc. 18 (2005), 779-822
MSC (2000): Primary 14E15, 14B05, 32S05, 32S45
Published electronically: July 13, 2005
MathSciNet review: 2163383
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Building upon work of Villamayor and Bierstone-Milman we give a proof of the canonical Hironaka principalization and desingularization. The idea of ``homogenized ideals" introduced in the paper gives a priori the canonicity of the algorithm and radically simplifies the proof.


References [Enhancements On Off] (What's this?)

  • 1. S. S. Abhyankar. Desingularization of plane curves, In Algebraic Geometry, Arcata 1981, Proc. Symp. Pure Appl. Math. 40, Amer. Math. Soc., 1983. MR 0713043 (85d:14024)
  • 2. S. S. Abhyankar. Good points of a hypersurface. Adv. in Math. 68 (1988), 87-256.MR 0934366 (89e:14012)
  • 3. D. Abramovich and A. J. de Jong. Smoothness, semistability, and toroidal geometry. J. Alg. Geom. 6 (1997), 789-801. MR 1487237 (99b:14016)
  • 4. D. Abramovich and J. Wang, Equivariant resolution of singularities in characteristic $0$. Math. Res. Letters 4 (1997), 427-433.MR 1453072 (98c:14011)
  • 5. J. M. Aroca, H. Hironaka, and J. L. Vicente.Theory of maximal contact. Memo Math. del Inst. Jorge Juan, 29, 1975. MR 0444999 (56:3344)
  • 6. J. M. Aroca, H. Hironaka, and J. L. Vicente. Desingularization theorems. Memo Math. del Inst. Jorge Juan, 30, 1977. MR 0480502 (80h:32027)
  • 7. E. Bierstone and P. Milman. Semianalytic and subanalytic sets. Publ. Math. IHES 67 (1988), 5-42. MR 0972342 (89k:32011)
  • 8. E. Bierstone and P. Milman. Uniformization of analytic spaces. J. Amer. Math. Soc. 2 (1989), 801-836. MR 1001853 (91c:32033)
  • 9. E. Bierstone and P. Milman. A simple constructive proof of canonical resolution of singularities. In T. Mora and C. Traverso, eds., Effective methods in algebraic geometry, pages 11-30. Birkhäuser, 1991. MR 1106412 (92h:32053)
  • 10. E. Bierstone and D. Milman. Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant. Invent. Math. 128 (1997), 207-302. MR 1440306 (98e:14010)
  • 11. E. Bierstone and D. Milman. Desingularization algorithms, I. Role of exceptional divisors. Mosc. Math. J. 3 (2003), 751-805, 1197.MR 2078560
  • 12. E. Bierstone and D. Milman. Desingularization of toric and binomial varieties., preprint math.AG/0411340
  • 13. A. Bravo and O. Villamayor. A strengthening of resolution of singularities in characteristic zero. Proc. London Math. Soc. (3) 86 (2003), 327-357.MR 1971154 (2004c:14020)
  • 14. F. Bogomolov and T. Pantev. Weak Hironaka theorem. Math. Res. Letters 3 (1996), 299-309. MR 1397679 (97e:14024)
  • 15. V. Cossart. Desingularization of embedded excellent surfaces. Tohoku Math. J. 33 (1981), 25-33. MR 0613106 (84k:14011)
  • 16. S.D. Cutkosky. Resolution of singularities. Graduate Studies in Mathematics, ISSN 1065-7339: v. 63 MR 2058431 (2005d:14022)
  • 17. S. Encinas and H. Hauser. Strong resolution of singularities in characteristic zero. Comment. Math. Helv. 77 (2002), 821-845. MR 1949115 (2004c:14021)
  • 18. S. Encinas and O. Villamayor. Good points and constructive resolution of singularities. Acta Math. 181 (1998), 109-158. MR 1654779 (99i:14020)
  • 19. S. Encinas and O. Villamayor. A course on constructive desingularization and equivariance. In H. Hauser et al., eds., Resolution of Singularities, A research textbook in tribute to Oscar Zariski, volume 181 of Progress in Mathematics. Birkhäuser, 2000. MR 1748620 (2001g:14018)
  • 20. S. Encinas and O. Villamayor. A new proof of desingularization over fields of characteristic zero. Rev. Mat. Iberoamericana 19 (2003), 339-353. MR 2023188 (2004m:14017)
  • 21. J. Giraud. Sur la théorie du contact maximal. Math. Zeit. 137 (1974), 285-310. MR 0460712 (57:705)
  • 22. R. Hartshorne. Algebraic Geometry. Graduate Texts in Mathematics 52, Springer-Verlag, 1977. MR 0463157 (57:3116)
  • 23. H. Hauser. The Hironaka theorem on resolution of singularities (or : A proof we always wanted to understand). Bull. Amer. Math. Soc. 40 (2003), 323-403.MR 1978567 (2004d:14009)
  • 24. H. Hironaka. An example of a non-Kählerian complex-analytic deformation of Kählerian complex structures. Annals of Math. (2), 75 (1962), 190-208.MR 0139182 (25:2618)
  • 25. H. Hironaka. Resolution of singularities of an algebraic variety over a field of characteristic zero. Annals of Math. 79 (1964), 109-326.MR 0199184 (33:7333)
  • 26. H. Hironaka. Introduction to the theory of infinitely near singular points. Memo Math. del Inst. Jorge Juan, 28, 1974. MR 0399505 (53:3349)
  • 27. H. Hironaka. Idealistic exponents of singularity. In Algebraic Geometry. The Johns Hopkins centennial lectures, pages 52-125. Johns Hopkins University Press, Baltimore, 1977. MR 0498562 (58:16661)
  • 28. R. Goldin and B. Teissier. Resolving singularities of plane analytic branches with one toric morphism. Progr. Math., 181, Birkhäuser, Basel, 2000. MR 1748626 (2001i:32042)
  • 29. Z. Jelonek. The extension of regular and rational embeddings. Math. Ann. 277 (1987), 113-120. MR 0884649 (88e:14016)
  • 30. A. J. de Jong. Smoothness, semistability, and alterations. Publ. Math. I.H.E.S. 83 (1996), 51-93. MR 1423020 (98e:14011)
  • 31. J. Lipman. Introduction to the resolution of singularities. In Arcata 1974, volume 29 of Proc. Symp. Pure Math., pages 187-229, 1975. MR 0389901 (52:10730)
  • 32. K. Matsuki. Notes on the inductive algorithm of resolution of singularities. Preprint.
  • 33. T. Oda. Infinitely very near singular points. Adv. Studies Pure Math. 8 (1986), 363-404. MR 0894302 (88j:14017)
  • 34. O. Villamayor. Constructiveness of Hironaka's resolution. Ann. Scient. Ecole Norm. Sup. 22 (1989), 1-32. MR 0985852 (90b:14014)
  • 35. O. Villamayor. Patching local uniformizations. Ann. Scient. Ecole Norm. Sup. 25 (1992), 629-677. MR 1198092 (93m:14012)
  • 36. O. Villamayor. Introduction to the algorithm of resolution. In Algebraic Geometry and Singularities, La Rabida 1991, pages 123-154. Birkhäuser, 1996. MR 1395178 (97h:14031)

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 14E15, 14B05, 32S05, 32S45

Retrieve articles in all journals with MSC (2000): 14E15, 14B05, 32S05, 32S45


Additional Information

Jaroslaw Wlodarczyk
Affiliation: Department of Mathematics, Purdue University, West Lafayette, Indiana 47907
Email: wlodar@math.purdue.edu, jwlodar@mimuw.edu.pl

DOI: http://dx.doi.org/10.1090/S0894-0347-05-00493-5
PII: S 0894-0347(05)00493-5
Received by editor(s): January 28, 2004
Published electronically: July 13, 2005
Additional Notes: The author was supported in part by NSF grant DMS-0100598 and Polish KBN grant 2 P03 A 005 16
Article copyright: © Copyright 2005 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.