Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

On the restriction of Deligne-Lusztig characters


Author: Mark Reeder
Journal: J. Amer. Math. Soc. 20 (2007), 573-602
MSC (2000): Primary 20C33
DOI: https://doi.org/10.1090/S0894-0347-06-00540-6
Published electronically: July 14, 2006
MathSciNet review: 2276780
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the multiplicities of Deligne-Lusztig characters upon restriction from a finite reductive group to a finite reductive subgroup. The result is a qualitative formula for the growth of multiplicities in terms of complexity. For restrictions from $ SO_{2n+1}$ to $ SO_{2n}$ we get exact multiplicities.


References [Enhancements On Off] (What's this?)

  • 1. D. Akhiezer and D. Panyushev, Multiplicities in the branching rules and the complexity of homogeneous spaces, Moscow Math. Jour., 2 no. 1, (2002) pp. 17-33. MR 1900582 (2003d:14057)
  • 2. E. Bannai, N. Kawanaka, and S.Y. Song, The character table of the Hecke algebra $ \mathcal{H}(GL_{2n}(\mathbf F_q),Sp_{2n}(\mathbf F_q))$, J. Algebra, 129 (1990), no. 2, pp. 320-366. MR 1040942 (91d:20052)
  • 3. M. Beynon and N. Spaltenstein, Tables of Green Polynomials for exceptional groups, Warwick computer science centre report no. 23 (1986).
  • 4. A. Borel, Linear algebraic groups, second enlarged edition, Graduate Texts in Mathematics, vol. 126, Springer-Verlag, New York, 1991. MR 1102012 (92d:20001)
  • 5. R. Carter, Finite groups of Lie type. Conjugacy classes and complex characters, John Wiley & Sons, Ltd., Chichester, 1993. MR 1266626 (94k:20020)
  • 6. -, Semisimple conjugacy classes and classes in the Weyl group, Jour. of Alg., 260 (2003) pp. 99-110. MR 1973577 (2004b:20071)
  • 7. S. DeBacker and M. Reeder, Depth-Zero Supercuspidal $ L$-packets and their Stability, preprint 2004.
  • 8. P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann. of Math., 103 (1976) pp. 103-161. MR 0393266 (52:14076)
  • 9. M. Geck, G. Hiss, F. Lübeck, G. Malle, and G. Pfeiffer, CHEVIE - A system for computing and processing generic character tables for finite groups of Lie type, Weyl groups and Hecke algebras, Appl. Algebra Engrg. Comm. Comput., 7 (1996) pp. 175-210. MR 1486215 (99m:20017)
  • 10. B. Gross, On the centralizer of a regular, semi-simple, stable conjugacy class, Electronic J. of Representation Theory (2005). MR 2133761 (2006a:20089)
  • 11. B. Gross and D. Prasad, On the decomposition of a representation of $ SO_n$ when restricted to $ SO_{n-1}$, Canad. J. Math., 44 (1992), pp. 974-1002. MR 1186476 (93j:22031)
  • 12. B. Gross and M. Reeder, From Laplace to Langlands via representations of orthogonal groups, Bull. Amer. Math. Soc., 43 (2006), pp. 163-205.
  • 13. T. Hagedorn, Multiplicities in Restricted Representations of $ GL_n(\mathbf F_q)$, $ U_n(\mathbf F_{q^2})$, $ SO_n(\mathbf F_q)$, Ph.D. thesis, Harvard University (1994).
  • 14. D. Kazhdan, Proof of Springer's hypothesis, Israel J. Math., 28 (1977), pp. 272-286. MR 0486181 (58:5959)
  • 15. D. Luna, Sur les orbites fermées des groupes algébriques réductifs, Invent. Math., 16 (1972), pp. 1-5. MR 0294351 (45:3421)
  • 16. G. Lusztig, Green functions and character sheaves, Ann. Math., 131 (1990), pp. 355-408.MR 1043271 (91c:20054)
  • 17. -, Symmetric spaces over a finite field, Grothendieck Festschrift, III Birkhäuser(1990), pp. 57-81.MR 1106911 (92e:20034)
  • 18. T. Shoji, On the Green polynomials of a Chevalley group of type $ F_4$, Comm. in Algebra, 10 (1982), pp. 505-543.MR 0647835 (83d:20030)
  • 19. -, On the Green polynomials of classical groups, Invent. Math., 74 (1983), pp. 239-267.MR 0723216 (85f:20032)
  • 20. -, Green functions of reductive groups over a finite field, Proc. Symp. Pure Math., (47), Amer. Math. Soc. (1987), pp. 289-301.MR 0933366 (88m:20014)
  • 21. T. A. Springer, Trigonometric sums, Green functions of finite groups and representations of Weyl groups, Invent. Math., 36 (1976), pp. 173-207.MR 0442103 (56:491)
  • 22. -, A construction of representations of Weyl groups, Invent. Math., 44 (1978), pp. 279-293. MR 0491988 (58:11154)
  • 23. -, A purity result for fixed point varieties in flag manifolds, J. Fac. Sci. Univ. Tokyo Sect. IA Math. , 31 (1984), pp. 271-282.MR 0763421 (86c:14034)
  • 24. T. A. Springer and R. Steinberg, Conjugacy Classes, Seminar in algebraic groups and related finite groups, Lecture Notes in Math., 131 (1970), pp. 167-266.MR 0268192 (42:3091)
  • 25. R. Steinberg, On the desingularization of the unipotent variety, Invent. Math., 36 (1976), pp. 209-224. MR 0430094 (55:3101)
  • 26. B. Srinivasan, Green polynomials for finite classical groups, Comm. in Algebra, 5 (1976), pp. 1241-1259. MR 0498889 (58:16905)
  • 27. E. Thoma, Die Einschränkung der Charaktere von GL(n,q) auf GL(n-1,q), Math. Z., 119 (1971), pp. 321-338. MR 0288190 (44:5388)

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 20C33

Retrieve articles in all journals with MSC (2000): 20C33


Additional Information

Mark Reeder
Affiliation: Department of Mathematics, Boston College, Chestnut Hill, Massachusetts 02467
Email: reederma@bc.edu

DOI: https://doi.org/10.1090/S0894-0347-06-00540-6
Received by editor(s): June 17, 2005
Published electronically: July 14, 2006
Additional Notes: The author was supported by NSF grant DMS-0207231
Article copyright: © Copyright 2006 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society