Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

Groups, measures, and the NIP


Authors: Ehud Hrushovski, Ya'acov Peterzil and Anand Pillay
Journal: J. Amer. Math. Soc. 21 (2008), 563-596
MSC (2000): Primary 03C68, 03C45, 22C05, 28E05
DOI: https://doi.org/10.1090/S0894-0347-07-00558-9
Published electronically: February 2, 2007
MathSciNet review: 2373360
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We discuss measures, invariant measures on definable groups, and genericity, often in an NIP (failure of the independence property) environment. We complete the proof of the third author's conjectures relating definably compact groups $ G$ in saturated $ o$-minimal structures to compact Lie groups. We also prove some other structural results about such $ G$, for example the existence of a left invariant finitely additive probability measure on definable subsets of $ G$. We finally introduce the new notion of ``compact domination" (domination of a definable set by a compact space) and raise some new conjectures in the $ o$-minimal case.


References [Enhancements On Off] (What's this?)

  • 1. Y. Baisalov and B. Poizat, Paires de structures $ o$-minimales, JSL 63 (1998), 570-578. MR 1627306 (99m:03063)
  • 2. A. Berarducci and M. Otero, An additive measure in $ o$-minimal expansions of fields, Quarterly Journal of Mathematics 55 (2004), 411-419. MR 2104681 (2005k:03087)
  • 3. A. Berarducci and M. Otero, Intersection Theory for o-minimal structures, APAL 107 (2001), 87-119, Lemma 10.5. MR 1807841 (2001m:03074)
  • 4. A. Berarducci, M. Otero, Y. Peterzil, and A. Pillay, A descending chain condition for groups in $ o$-minimal structures, APAL 134 (2005), 303-313. MR 2139910 (2006a:03052)
  • 5. A. Dolich, Forking and independence in $ o$-minimal theories, JSL 69 (2004), 215-240. MR 2039358 (2005g:03050)
  • 6. M. Edmundo, Locally definable groups in $ o$-minimal structures, J. of Algebra 301 (2006), 194-223. MR 2230327
  • 7. M. Edmundo and M. Otero, Definably compact abelian groups, Journal of Math. Logic, 4 (2004), 163-180. MR 2114966 (2005m:03073)
  • 8. P. Eleftheriou, Ph.D. thesis, U. of Notre Dame.
  • 9. Euclid, Elements, Book V, tr. T.L. Heath.
  • 10. R. Grossberg, J. Iovino, and O. Lessmann, A primer of simple theories, Archive Math. Logic 41 (2002), 541-580. MR 1923196 (2003f:03043)
  • 11. E. Hewitt and K. Ross,Abstract harmonic analysis. Vol. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 115, 2, Springer-Verlag, Berlin, 1979. MR 551496 (81k:43001)
  • 12. E. Hrushovski, Valued fields, metastable groups, draft, 2004.
  • 13. H. J. Keisler, Measures and Forking, Annals of Pure and Applied Logic 43 (1987), 119-169. MR 890599 (88i:03052)
  • 14. L. Newelski and M. Petrykowski, Weak generic types and coverings of groups, Fund. Math. 191 (2006), 201-225.
  • 15. A. Onshuus, Groups definable in $ (\mathbb{Z},+,<)$, preprint, 2005.
  • 16. A. Onshuus and A. Pillay, Definable groups and $ p$-adic Lie groups, preprint, 2005.
  • 17. Y. Peterzil, A. Pillay and S. Starchenko, Definably simple groups in $ o$-minimal structures, Trans. AMS, 352 (2000), 4397-4419. MR 1707202 (2001b:03036)
  • 18. Y. Peterzil, A. Pillay and S. Starchenko, Linear groups definable in o-minimal structures, J. of Algebra 247 (2002), 1-23. MR 1873380 (2002i:03043)
  • 19. Y. Peterzil and A. Pillay, Generic sets in definably compact groups, Fund. Math. 193 (2007), 153-170.
  • 20. Y. Peterzil and S. Starchenko, Definable homomorphisms of abelian groups in $ o$-minimal structures, Annals of Pure and Applied Logic 101 (2000), 1-27. MR 1729742 (2000m:03090)
  • 21. Y. Peterzil and S. Starchenko, Uniform definability of the Weierstrass $ \wp$-functions and generalized tori of dimension one, Selecta Mathematica, New Series 10 (2004), 525-550. MR 2134454 (2006d:03063)
  • 22. Y. Peterzil and C. Steinhorn, Definable compactness and definable subgroups of $ o$-minimal groups, J. London Math. Soc 59 (1999), 769-786. MR 1709079 (2000i:03055)
  • 23. A. Pillay, Type-definability, compact Lie groups, and $ o$-minimality, J. Math. Logic 4 (2004), 147-162. MR 2114965 (2006d:03064)
  • 24. A. Pillay, Geometric Stability Theory, OUP, 1996. MR 1429864 (98a:03049)
  • 25. B. Poizat, A Course in Model Theory, Springer-Verlag, 2000. MR 1757487 (2001a:03072)
  • 26. S. Shelah, Classification theory for elementary classes with the dependence property - a modest beginning, Sci. Japonicae 59 (2004), 265-316. MR 2062198 (2005m:03063)
  • 27. S. Shelah, Minimal bounded index subgroup for dependent theories, to appear in Proceedings AMS.

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 03C68, 03C45, 22C05, 28E05

Retrieve articles in all journals with MSC (2000): 03C68, 03C45, 22C05, 28E05


Additional Information

Ehud Hrushovski
Affiliation: Hebrew University of Jerusalem, Department of Mathematics, Jerusalem, Israel

Ya'acov Peterzil
Affiliation: University of Haifa, Department of Mathematics and Computer Science, Haifa, Israel

Anand Pillay
Affiliation: University of Illinois, Department of Mathematics, Altgeld Hall, 1409 W Green Street Urbana, IL 61801, and University of Leeds, School of Mathematics, Leeds, LS2 9JT England

DOI: https://doi.org/10.1090/S0894-0347-07-00558-9
Keywords: $o$-minimal, independence property, compact Lie group, Keisler measure.
Received by editor(s): July 16, 2006
Published electronically: February 2, 2007
Additional Notes: The first author was supported by the Israel Science Foundation grant no. 244/03
The last author was supported by NSF grants DMS-0300639 and FRG DMS-0100979, as well as a Marie Curie chair
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society