Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

Potentially semi-stable deformation rings


Author: Mark Kisin
Journal: J. Amer. Math. Soc. 21 (2008), 513-546
MSC (2000): Primary 11S20
DOI: https://doi.org/10.1090/S0894-0347-07-00576-0
Published electronically: September 20, 2007
MathSciNet review: 2373358
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ K/\Q_p$ be a finite extension and $ G_K$ the absolute Galois group of $ K$. For $ (A^{\circ}, \mathfrak{m})$ a complete local ring with finite residue and $ V_{A^{\circ}}$ a finite free $ A^{\circ}$-module equipped with an action of $ G_K$ , we show that $ A^{\circ}[1/p]$ has a maximal quotient over which the representation $ V_{A^{\circ}}$ is semi-stable with Hodge-Tate weights in a given range. We show an analogous result for representations which are potentially semi-stable of fixed Galois type and $ p$-adic Hodge type.

If $ V_{A^{\circ}}$ is the universal deformation of $ V_{A^{\circ}}\otimes_{A^{\circ}} A^{\circ}/\mathfrak{m}$, then we compute the dimension of $ A^{\circ}[1/p]$ and we show that these rings are sometimes smooth.

Finally we apply this theory to show, in some new cases, the compatibility of the $ p$-adic Galois representation attached to a Hilbert modular form with the local Langlands correspondence at $ p$.


References [Enhancements On Off] (What's this?)

  • [BCDT] C. Breuil, B. Conrad, F. Diamond, R. Taylor, On the modularity of elliptic curves over $ \mathbb{Q}:$ wild $ 3$-adic exercises, J. Amer. Math. Soc. 14 (2001), 843-939. MR 1839918 (2002d:11058)
  • [BC] L. Berger, P. Colmez, Familles de représentations de de Rham et monodromie $ p$-adique, preprint (2007).
  • [Be] L. Berger, Limites des représentations cristallines, Compositio Math. 140 (2004), 1473-1498. MR 2098398 (2006c:11138)
  • [BL] A. Beauville, Y. Lazlo, Un lemme de descente, C.R. Acad. Sci. Paris 320 (1995), 335-340. MR 1320381 (96a:14049)
  • [BM] C. Breuil, A. Mézard, Multiplicités modulaires et représentations de $ \operatorname{GL}_{2}(\mathbb{Z}_{p})$ et de $ \operatorname{Gal}(\bar{\mathbb{Q}}_{p}/\mathbb{Q}_{p})$ en $ l = p$, Duke Math. J. 115 (2002), 205-310, with an appendix by G. Henniart. MR 1944572 (2004i:11052)
  • [BR] D. Blasius, J. Rogowski, Motives for Hilbert modular forms, Invent. Math. 114 (1993), 55-87. MR 1235020 (94i:11033)
  • [Br] C. Breuil, Une remarque sur les représentations locales p-adiques et les congruences entre formes modulaires de Hilbert, Bull. Soc. Math. de France 127 (1999), 459-472. MR 1724405 (2000h:11054)
  • [Ca] H. Carayol, Sur les représentations $ l$-adiques associées aux formes modulaires de Hilbert., Ann. Sci. École Norm. Sup. 19 (1986), 409-468. MR 870690 (89c:11083)
  • [De] J. Dee, $ \Phi $-$ \Gamma $ modules for families of Galois representations, J. Algebra 235 (2001), 636-664. MR 1805474 (2001m:12012)
  • [deJ] A.J. de Jong, Crystalline Dieudonne module theory via formal and rigid geometry, Inst. des Hautes Études Sci. Publ. Math. 82 (1995), 5-96. MR 1383213 (97f:14047)
  • [EK] M. Emerton, M. Kisin, Extensions of crystalline representations, Preprintreihe SFB 478 36, 49 pages.
  • [Fa 1] G. Faltings, Algebraic loop groups and moduli spaces of bundles, J. Eur. Math. Soc. 5 (2003), 41-68. MR 1961134 (2003k:14011)
  • [Fa 2] G. Faltings, Integral crystalline cohomology over very ramified valuation rings, JAMS 12 (1999), 117-144. MR 1618483 (99e:14022)
  • [FM] J.M. Fontaine, B. Mazur, Geometric Galois Representations, Elliptic curves, modular forms, and Fermat's last theorem (Hong Kong 1993), Internat. Press, Cambridge MA, pp. 41-78, 1995. MR 1363495 (96h:11049)
  • [Fo 1] J-M. Fontaine, Représentations $ p$-adiques des corps locaux, Grothendieck Festschrift II, Prog. Math. 87, Birkhauser, pp. 249-309, 1991. MR 1106901 (92i:11125)
  • [Fo 2] J.M. Fontaine, Représentations $ p$-adiques semi-stables, Périodes $ p$-adiques, Astérisque 223, Société Mathématique de France, pp. 113-184, 1994. MR 1293972 (95g:14024)
  • [Fo 3] J.M. Fontaine, Deforming semi-stable Galois representations, Proc. Natl. Acad. Sci. USA 94 (1997), 11138-11141. MR 1491974 (99a:11064)
  • [FP] J.M. Fontaine, B. Perrin-Riou, Autour des conjectures de Bloch et Kato: cohomologie galoisienne et valeurs de fonctions $ L$, Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math., 55, Part 1, pp. 599-706, 1994. MR 1265546 (95j:11046)
  • [Gr] A. Grothendieck, J. Dieudonné, Elèments de géometrie algèbrique I,II,III,IV, Inst. des Hautes Études Sci. Publ. Math. 4, 8, 11, 17, 20, 24, 28, 32 (1961-67).
  • [Ki 1] M. Kisin, Moduli of finite flat group schemes and modularity, preprint (2004), 75 pages.
  • [Ki 2] M. Kisin, Crystalline representations and $ F$-crystals, Algebraic geometry and number theory. In honour of Vladimir Drinfeld's $ 50^{\text{th}}$ birthday, Prog. Math. 253, Birkhäuser, pp. 459-496, 2006. MR 2263197
  • [Ki 3] M. Kisin, The Fontaine-Mazur conjecture for $ \operatorname{GL}_{2}$, preprint (2006).
  • [L] T. Liu, Torsion $ p$-adic Galois representations and a conjecture of Fontaine, preprint (2006).
  • [Ma] B. Mazur, Deforming Galois representations, Galois groups over $ \mathbb{Q}$ (Berkeley, CA, 1987), Math. Sci. Res. Inst. Publ. 16, Springer, New York-Berlin, pp. 395-437, 1989. MR 1012172 (90k:11057)
  • [Ra] R. Ramakrishna, On a variation of Mazur's deformation functor, Compositio Math. 87 (1993), 269-286. MR 1227448 (94h:11054)
  • [Sa 1] T. Saito, Modular forms and $ p$-adic Hodge theory, Invent. Math. 129(3) (1997), 607-620. MR 1465337 (98g:11060)
  • [Sa 2] T. Saito, Hilbert modular forms and $ p$-adic Hodge theory, preprint.
  • [Ta 1] R. Taylor, On Galois representations associated to Hilbert modular forms, Invent. Math. 98 (1989), 265-280. MR 1016264 (90m:11176)
  • [Ta 2] R. Taylor, On Galois representations associated to Hilbert modular forms. II, Elliptic curves, modular forms, & Fermat's last theorem (Hong Kong, 1993), Ser. Number Theory, I, Internat. Press, Cambridge, MA, 1995., pp. 185-191. MR 1363502 (96j:11073)
  • [Ta 3] R. Taylor, Galois representations associated to Siegel modular forms of low weight, Duke 63 (1991), 281-332. MR 1115109 (92j:11044)
  • [Wi] A. Wiles, Modular elliptic curves and Fermat's last theorem, Ann. of Math. 141(3) (1995), 443-551. MR 1333035 (96d:11071)

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 11S20

Retrieve articles in all journals with MSC (2000): 11S20


Additional Information

Mark Kisin
Affiliation: Department of Mathematics, University of Chicago, Chicago, Illinois 60637
Email: kisin@math.uchicago.edu

DOI: https://doi.org/10.1090/S0894-0347-07-00576-0
Received by editor(s): April 13, 2006
Published electronically: September 20, 2007
Additional Notes: The author was partially supported by NSF grant DMS-0400666 and a Sloan Research Fellowship.
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society