Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)



Fedosov quantization in positive characteristic

Authors: R. Bezrukavnikov and D. Kaledin
Journal: J. Amer. Math. Soc. 21 (2008), 409-438
MSC (2000): Primary 14M99
Published electronically: November 26, 2007
MathSciNet review: 2373355
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the problem of deformation quantization for (algebraic) symplectic manifolds over a base field of positive characteristic. We prove a reasonably complete classification theorem for one class of such quantizations; in the course of doing it, we also introduce a notion of a restricted Poisson algebra - the Poisson analog of the standard notion of a restricted Lie algebra - and we prove a version of the Darboux Theorem valid in the positive characteristic setting.

References [Enhancements On Off] (What's this?)

  • [BK1] R. Bezrukavnikov and D. Kaledin, Fedosov quantization in algebraic context, Mosc. Math. J. 4 (2004), no. 3, 559–592, 782 (English, with English and Russian summaries). MR 2119140
  • [BK2] R. V. Bezrukavnikov and D. B. Kaledin, McKay equivalence for symplectic resolutions of quotient singularities, Tr. Mat. Inst. Steklova 246 (2004), no. Algebr. Geom. Metody, Svyazi i Prilozh., 20–42 (Russian, with Russian summary); English transl., Proc. Steklov Inst. Math. 3 (246) (2004), 13–33. MR 2101282
  • [BMR] R. Bezrukavnikov, I. Mirkovic, and D. Rumynin, Localization of modules for a semisimple Lie algebra in prime characteristic, math.RT/0205144.
  • [D] Michel Demazure, Lectures on 𝑝-divisible groups, Lecture Notes in Mathematics, Vol. 302, Springer-Verlag, Berlin-New York, 1972. MR 0344261
  • [DP] Michel Demazure and Pierre Gabriel, Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs, Masson & Cie, Éditeur, Paris; North-Holland Publishing Co., Amsterdam, 1970 (French). Avec un appendice Corps de classes local par Michiel Hazewinkel. MR 0302656
  • [G] Jean Giraud, Cohomologie non abélienne, Springer-Verlag, Berlin-New York, 1971 (French). Die Grundlehren der mathematischen Wissenschaften, Band 179. MR 0344253
  • [EGA] A. Grothendieck, Éléments de Géométrie Algébrique, III, Publ. Math. IHES 24.
  • [K] Maxim Kontsevich, Deformation quantization of algebraic varieties, Lett. Math. Phys. 56 (2001), no. 3, 271–294. EuroConférence Moshé Flato 2000, Part III (Dijon). MR 1855264, 10.1023/A:1017957408559
  • [M] James S. Milne, Étale cohomology, Princeton Mathematical Series, vol. 33, Princeton University Press, Princeton, N.J., 1980. MR 559531
  • [NT] Ryszard Nest and Boris Tsygan, Deformations of symplectic Lie algebroids, deformations of holomorphic symplectic structures, and index theorems, Asian J. Math. 5 (2001), no. 4, 599–635. MR 1913813, 10.4310/AJM.2001.v5.n4.a2
  • [Y] Amnon Yekutieli, Deformation quantization in algebraic geometry, Adv. Math. 198 (2005), no. 1, 383–432. MR 2183259, 10.1016/j.aim.2005.06.009

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 14M99

Retrieve articles in all journals with MSC (2000): 14M99

Additional Information

R. Bezrukavnikov
Affiliation: Department of Mathematics, Massachusets Institute of Technology, Cambridge, Massachusetts 02139

D. Kaledin
Affiliation: Steklov Institute, Gubkina 8, Moscow, 119991, Russia

Received by editor(s): October 7, 2005
Published electronically: November 26, 2007
Additional Notes: The first author was partially supported by NSF grant DMS-0071967.
The second author was partially supported by CRDF grant RM1-2694-MO05.
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.