Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

Link Floer homology and the Thurston norm


Authors: Peter Ozsváth and Zoltán Szabó
Journal: J. Amer. Math. Soc. 21 (2008), 671-709
MSC (2000): Primary 53Dxx, 57Rxx, 57Mxx
DOI: https://doi.org/10.1090/S0894-0347-08-00586-9
Published electronically: January 22, 2008
MathSciNet review: 2393424
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that link Floer homology detects the Thurston norm of a link complement. As an application, we show that the Thurston polytope of an alternating link is dual to the Newton polytope of its multi-variable Alexander polynomial. To illustrate these techniques, we also compute the Thurston polytopes of several specific link complements.


References [Enhancements On Off] (What's this?)

  • 1. R. Crowell.
    Genus of alternating link types.
    Ann. of Math. (2), 69:258-275, 1959. MR 0099665 (20:6103b)
  • 2. S. K. Donaldson.
    Lefschetz pencils on symplectic manifolds.
    J. Differential Geom., 53(2):205-236, 1999. MR 1802722 (2002g:53154)
  • 3. D. Eisenbud and W. Neumann.
    Three-dimensional link theory and invariants of plane curve singularities, volume 110 of Ann. of Math. Studies.
    Princeton University Press, Princeton, NJ, 1985. MR 817982 (87g:57007)
  • 4. Y. Eliashberg.
    A few remarks about symplectic filling.
    Geom. Topol., 8:277-293, 2004. MR 2023279 (2005a:57022b)
  • 5. Y. Eliashberg and W. P. Thurston.
    Confoliations, volume 13 of University Lecture Series.
    AMS, Providence, RI, 1998. MR 1483314 (98m:53042)
  • 6. J. B. Etnyre.
    On symplectic fillings.
    Algebr. Geom. Topol., 4:73-80, 2004. MR 2023278 (2005a:57022a)
  • 7. A. Floer.
    Morse theory for Lagrangian intersections.
    J. Differential Geometry, 28:513-547, 1988. MR 965228 (90f:58058)
  • 8. A. Floer.
    The unregularized gradient flow of the symplectic action.
    Comm. Pure Appl. Math., 41(6):775-813, 1988. MR 948771 (89g:58065)
  • 9. D. Gabai.
    Foliations and the topology of $ 3$-manifolds.
    J. Differential Geom., 18(3):445-503, 1983. MR 723813 (86a:57009)
  • 10. D. Gabai.
    Foliations and the topology of $ 3$-manifolds III.
    J. Differential Geom., 26(3):479-536, 1987. MR 910018 (89a:57014b)
  • 11. M. Hedden.
    On knot Floer homology and cabling.
    Alg. Geom. Topol., 5:1197-1222, 2005. MR 2171808 (2006m:57042)
  • 12. P. B. Kronheimer and T. S. Mrowka.
    Floer homology for Seiberg-Witten Monopoles.
    Preprint.
  • 13. P. B. Kronheimer and T. S. Mrowka.
    Scalar curvature and the Thurston norm.
    Math. Res. Lett., (4):931-937, 1997. MR 1492131 (98m:57039)
  • 14. P. B. Kronheimer, T. S. Mrowka, P. S. Ozsváth, and Z. Szabó.
    Monopoles and lens space surgeries.
    Ann. of Math. (2), 165(2):457-546, 2007. MR 2299739
  • 15. C. T. McMullen.
    The Alexander polynomial of a $ 3$-manifold and the Thurston norm on cohomology.
    Ann. Sci. de l'Ecole Norm. Sup., 35(2):153-171, 2002. MR 1914929 (2003d:57044)
  • 16. K. Murasugi.
    On the Alexander polynomial of alternating algebraic knots.
    J. Austral. Math. Soc. Ser. A, 39(3):317-333, 1985. MR 802722 (87e:57012)
  • 17. Y. Ni.
    A note on knot Floer homology of links.
    Geom. Topol., 10:695-713, 2006. MR 2240902 (2007f:57063)
  • 18. Y. Ni.
    Sutured Heegaard diagrams for knots.
    Algebr. Geom. Topol., 6:513-537, 2006. MR 2220687 (2007b:57015)
  • 19. P. S. Ozsváth and Z. Szabó.
    Heegaard Floer homology and alternating knots.
    Geom. Topol., 7:225-254, 2003. MR 1988285 (2004f:57040)
  • 20. P. S. Ozsváth and Z. Szabó.
    Heegaard diagrams and holomorphic disks.
    In Different faces of geometry, Int. Math. Ser. (N. Y.), pages 301-348. Kluwer/Plenum, New York, 2004. MR 2102999 (2005g:57057)
  • 21. P. S. Ozsváth and Z. Szabó.
    Holomorphic disks and genus bounds.
    Geom. Topol., 8:311-334, 2004. MR 2023281 (2004m:57024)
  • 22. P. S. Ozsváth and Z. Szabó.
    Holomorphic disks and knot invariants.
    Adv. Math., 186(1):58-116, 2004. MR 2065507 (2005e:57044)
  • 23. P. S. Ozsváth and Z. Szabó.
    Holomorphic disks and topological invariants for closed three-manifolds.
    Ann. of Math. (2), 159(3):1027-1158, 2004. MR 2113019 (2006b:57016)
  • 24. P. S. Ozsváth and Z. Szabó.
    Heegaard Floer homology and contact structures.
    Duke Math. J., 129(1):39-61, 2005. MR 2153455 (2006b:57043)
  • 25. P. S. Ozsváth and Z. Szabó.
    Holomorphic disks, link invariants, and the multi-variable Alexander polynomial.
    math.GT/0512286, 2005.
  • 26. J. A. Rasmussen.
    Floer homology and knot complements.
    PhD thesis, Harvard University, 2003.
  • 27. D. Rolfsen.
    Knots and links, volume 7 of Mathematics Lecture Series.
    Publish or Perish Inc., Houston, TX, 1990.
    Corrected reprint of the 1976 original. MR 1277811 (95c:57018)
  • 28. W. P. Thurston.
    A norm for the homology of $ 3$-manifolds, volume 59 of Mem. Amer. Math. Soc., pages i-vi and 99-130.
    1986. MR 823443 (88h:57014)
  • 29. V. Turaev.
    Torsions of 3-manifolds, volume 4 of Geom. Topol. Monogr.
    Geom. Topol. Publ., Coventry, 2002. MR 2002617 (2004g:57035)

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 53Dxx, 57Rxx, 57Mxx

Retrieve articles in all journals with MSC (2000): 53Dxx, 57Rxx, 57Mxx


Additional Information

Peter Ozsváth
Affiliation: Department of Mathematics, Columbia University, New York, New York 10027
Email: petero@math.columbia.edu

Zoltán Szabó
Affiliation: Department of Mathematics, Princeton University, Princeton, New Jersey 08544
Email: szabo@math.princeton.edu

DOI: https://doi.org/10.1090/S0894-0347-08-00586-9
Received by editor(s): February 6, 2006
Published electronically: January 22, 2008
Additional Notes: The first author was supported by NSF grant number DMS-050581
The second author was supported by NSF grant number DMS-0406155
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society