Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)



On the radius of injectivity of null hypersurfaces

Authors: Sergiu Klainerman and Igor Rodnianski
Journal: J. Amer. Math. Soc. 21 (2008), 775-795
MSC (2000): Primary 35J10
Published electronically: March 18, 2008
MathSciNet review: 2393426
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We investigate the regularity of past (future) boundaries of points in regular, Einstein vacuum spacetimes. We provide conditions, expressed in terms of a space-like foliation and which imply, in particular, uniform $ L^2$ bounds for the curvature tensor, sufficient to ensure the local nondegeneracy of these boundaries. More precisely we provide a uniform lower bound on the radius of injectivity of the null boundaries $ \mathcal{N}^{\pm}(p)$ of the causal past (future) sets $ \mathcal{J}^{\pm}(p)$. Such lower bounds are essential in understanding the causal structure and the related propagation properties of solutions to the Einstein equations. They are particularly important in construction of an effective Kirchoff-Sobolev type parametrix for solutions of wave equations on $ \mathbf{M}$. Such parametrices are used by the authors in a forthcoming paper to prove a large data break-down criterion for solutions of the Einstein vacuum equations.

References [Enhancements On Off] (What's this?)

  • [A1] M. Anderson, Regularity for Lorentz metrics under curvature bounds, J. Math. Phys. 44 (2003), 2994-3012. MR 1982778 (2004c:53104)
  • [A2] M. Anderson, Cheeger-Gromov theory and applications to General Relativity, in: The Einstein Equations and the Large Scale Behavior of Gravitational Fields (Cargese 2002), Ed. P.T. Chruściel and H. Friedrich, Birkauser, Basel (2004), 347-377. MR 2098921 (2005f:53055)
  • [A3] M. Anderson, On long-time evolution in general relativity and geometrization of $ 3$-manifolds, Comm. Math. Phys. 222 (2001), 533-567. MR 1888088 (2003d:53113)
  • [AC] M. Anderson, J. Cheeger, Diffeomorphism finiteness for manifolds with Ricci curvature and $ L^{\frac n2}$ curvature bounded, GAFA 1 (1991), 231-251. MR 1118730 (92h:53052)
  • [Br] Y. Choquét-Bruhat, Theoreme d'Existence pour certains systemes d'equations aux derivees partielles nonlineaires, Acta Math. 88 (1952), 141-225. MR 0053338 (14:756g)
  • [Ch] J. Cheeger, Finiteness theorems for Riemannian manifolds, Am. J. Math. 92 (1970), 61-75. MR 0263092 (41:7697)
  • [C-K] D. Christodoulou, S. Klainerman, The global nonlinear stability of the Minkowski space, Princeton Math. Series 41, 1993. MR 1316662 (95k:83006)
  • [Fried] H.G. Friedlander, The Wave Equation on a Curved Space-time, Cambridge University Press, 1976. MR 0460898 (57:889)
  • [G] G. Galloway, Maximum principles for null hypersurfaces and null splitting theorems, Ann. Henri Poincare 1 (2000), 543-567. MR 1777311 (2002b:53052)
  • [HE] S.W. Hawking, G.F.R. Ellis, The Large Scale Structure of Space-time, Cambridge University Press, Cambridge, 1973. MR 0424186 (54:12154)
  • [HKM] T.J.R. Hughes, T. Kato and J.E. Marsden, Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity, Arch. Rational Mech. Anal. 63 (1977), 273-394. MR 0420024 (54:8041)
  • [KR1] S. Klainerman and I. Rodnianski, Causal geometry of Einstein-Vacuum spacetimes with finite curvature flux Inventiones Math. 2005, vol. 159, No. 3, 437-529. MR 2125732 (2006e:58042)
  • [KR2] S. Klainerman and I. Rodnianski, A geometric approach to Littlewood-Paley theory, GAFA 16 (2006), 126-163. MR 2221254 (2007e:58046)
  • [KR3] S. Klainerman and I. Rodnianski, Sharp trace theorems for null hypersurfaces on Einstein metrics with finite curvature flux, GAFA 16 (2006), 164-229. MR 2221255 (2007e:58047)
  • [KR4] S. Klainerman and I. Rodnianski, A Kirchoff-Sobolev parametrix for the wave equation in curved space-time, preprint
  • [KR5] S. Klainerman and I. Rodnianski, A large data break-down criterion in General Relativity, submitted to J. Amer. Math. Soc.
  • [PSW] P. Petersen, S.D. Steingold, G. Wei, Comparison geometry with integral curvature bounds, GAFA 7 (1997), 1011-1030. MR 1487752 (99c:53022)
  • [Pe] P. Peterson, Convergence theorems in Riemannian geometry, MSRI publications, volume 30, 1997. MR 1452874 (98k:53049)
  • [Sob] S. Sobolev, Methodes nouvelle a resoudre le probleme de Cauchy pour les equations lineaires hyperboliques normales, Matematicheskii Sbornik, vol. 1 (43) 1936, 31-79.
  • [Wang] Q. Wang, Causal geometry of Einstein vacuum space-times. Ph.D. thesis, Princeton University, 2006.

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 35J10

Retrieve articles in all journals with MSC (2000): 35J10

Additional Information

Sergiu Klainerman
Affiliation: Department of Mathematics, Princeton University, Princeton, New Jersey 08544

Igor Rodnianski
Affiliation: Department of Mathematics, Princeton University, Princeton, New Jersey 08544

Received by editor(s): March 5, 2006
Published electronically: March 18, 2008
Additional Notes: The first author is supported by NSF grant DMS-0070696
The second author is partially supported by NSF grant DMS-0406627
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society