Orbit equivalence for Cantor minimal -systems

Authors:
Thierry Giordano, Hiroki Matui, Ian F. Putnam and Christian F. Skau

Journal:
J. Amer. Math. Soc. **21** (2008), 863-892

MSC (2000):
Primary 37B99; Secondary 37B50, 37A20

Published electronically:
January 22, 2008

MathSciNet review:
2393431

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that every minimal, free action of the group on the Cantor set is orbit equivalent to an AF-relation. As a consequence, this extends the classification of minimal systems on the Cantor set up to orbit equivalence to include AF-relations, -actions and -actions.

**[CFW]**A. Connes, J. Feldman, and B. Weiss,*An amenable equivalence relation is generated by a single transformation*, Ergodic Theory Dynamical Systems**1**(1981), no. 4, 431–450 (1982). MR**662736****[D]**H. A. Dye,*On groups of measure preserving transformation. I*, Amer. J. Math.**81**(1959), 119–159. MR**0131516****[F]**Alan Forrest,*A Bratteli diagram for commuting homeomorphisms of the Cantor set*, Internat. J. Math.**11**(2000), no. 2, 177–200. MR**1754619**, 10.1142/S0129167X00000106**[GMPS]**T. Giordano, H. Matui, I.F. Putnam and C.F. Skau,*The absorption theorem for affable equivalence relations*, Ergodic Theory Dynam. Systems, to appear.**[GPS1]**Thierry Giordano, Ian F. Putnam, and Christian F. Skau,*Topological orbit equivalence and 𝐶*-crossed products*, J. Reine Angew. Math.**469**(1995), 51–111. MR**1363826****[GPS2]**Thierry Giordano, Ian Putnam, and Christian Skau,*Affable equivalence relations and orbit structure of Cantor dynamical systems*, Ergodic Theory Dynam. Systems**24**(2004), no. 2, 441–475. MR**2054051**, 10.1017/S014338570300066X**[GPS3]**Thierry Giordano, Ian F. Putnam, and Christian F. Skau,*The orbit structure of Cantor minimal ℤ²-systems*, Operator Algebras: The Abel Symposium 2004, Abel Symp., vol. 1, Springer, Berlin, 2006, pp. 145–160. MR**2265047**, 10.1007/978-3-540-34197-0_7**[HPS]**Richard H. Herman, Ian F. Putnam, and Christian F. Skau,*Ordered Bratteli diagrams, dimension groups and topological dynamics*, Internat. J. Math.**3**(1992), no. 6, 827–864. MR**1194074**, 10.1142/S0129167X92000382**[JKL]**S. Jackson, A. S. Kechris, and A. Louveau,*Countable Borel equivalence relations*, J. Math. Log.**2**(2002), no. 1, 1–80. MR**1900547**, 10.1142/S0219061302000138**[J]**Ø. Johansen,*Ordered K-theory and Bratteli diagrams:Implications for Cantor minimal systems*, Ph.D. thesis, NTNU, 1998.**[LO]**Samuel J. Lightwood and Nicholas S. Ormes,*Bounded orbit injections and suspension equivalence for minimal ℤ² actions*, Ergodic Theory Dynam. Systems**27**(2007), no. 1, 153–182. MR**2297092**, 10.1017/S014338570600068X**[M1]**Hiroki Matui,*A short proof of affability for certain Cantor minimal ℤ²-systems*, Canad. Math. Bull.**50**(2007), no. 3, 418–426. MR**2344176**, 10.4153/CMB-2007-040-3**[M2]**Hiroki Matui,*Affability of equivalence relations arising from two-dimensional substitution tilings*, Ergodic Theory Dynam. Systems**26**(2006), no. 2, 467–480. MR**2218771**, 10.1017/S0143385705000611**[OW1]**Donald S. Ornstein and Benjamin Weiss,*Ergodic theory of amenable group actions. I. The Rohlin lemma*, Bull. Amer. Math. Soc. (N.S.)**2**(1980), no. 1, 161–164. MR**551753**, 10.1090/S0273-0979-1980-14702-3**[OW2]**Donald S. Ornstein and Benjamin Weiss,*Entropy and isomorphism theorems for actions of amenable groups*, J. Analyse Math.**48**(1987), 1–141. MR**910005**, 10.1007/BF02790325**[PPZ]**J. Peebles, I.F. Putnam and I.F. Zwiers,*A survey of orbit equivalence for Cantor minimal dynamics*, in preparation.**[Ph]**N. Christopher Phillips,*Crossed products of the Cantor set by free minimal actions of ℤ^{𝕕}*, Comm. Math. Phys.**256**(2005), no. 1, 1–42. MR**2134336**, 10.1007/s00220-004-1171-y**[R]**Jean Renault,*A groupoid approach to 𝐶*-algebras*, Lecture Notes in Mathematics, vol. 793, Springer, Berlin, 1980. MR**584266**

Retrieve articles in *Journal of the American Mathematical Society*
with MSC (2000):
37B99,
37B50,
37A20

Retrieve articles in all journals with MSC (2000): 37B99, 37B50, 37A20

Additional Information

**Thierry Giordano**

Affiliation:
Department of Mathematics and Statistics, University of Ottawa, 585 King Edward, Ottawa, Ontario, Canada K1N 6N5

**Hiroki Matui**

Affiliation:
Graduate School of Science and Technology, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan

**Ian F. Putnam**

Affiliation:
Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia, Canada V8W 3P4

**Christian F. Skau**

Affiliation:
Department of Mathematical Sciences, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway

DOI:
https://doi.org/10.1090/S0894-0347-08-00595-X

Received by editor(s):
September 22, 2006

Published electronically:
January 22, 2008

Additional Notes:
The first author was supported in part by a grant from NSERC, Canada

The second author was supported in part by a grant from the Japan Society for the Promotion of Science

The third author was supported in part by a grant from NSERC, Canada

The last author was supported in part by the Norwegian Research Council

Article copyright:
© Copyright 2008
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.