Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

On the superrigidity of malleable actions with spectral gap


Author: Sorin Popa
Journal: J. Amer. Math. Soc. 21 (2008), 981-1000
MSC (2000): Primary 46L35; Secondary 37A20, 22D25, 28D15
DOI: https://doi.org/10.1090/S0894-0347-07-00578-4
Published electronically: September 26, 2007
MathSciNet review: 2425177
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that if a countable group $ \Gamma $ contains infinite commuting subgroups $ H, H'\subset \Gamma $ with $ H$ non-amenable and $ H'$ ``weakly normal'' in $ \Gamma $, then any measure preserving $ \Gamma $-action on a probability space which satisfies certain malleability, spectral gap and weak mixing conditions (e.g. a Bernoulli $ \Gamma $-action) is cocycle superrigid. If in addition $ H'$ can be taken non-virtually abelian and $ \Gamma \curvearrowright X$ is an arbitrary free ergodic action while $ \Lambda \curvearrowright Y=\mathbb{T}^{\Lambda }$ is a Bernoulli action of an arbitrary infinite conjugacy class group, then any isomorphism of the associated II$ _{1}$ factors $ L^{\infty }X \rtimes \Gamma \simeq L^{\infty }Y \rtimes \Lambda $ comes from a conjugacy of the actions.


References [Enhancements On Off] (What's this?)

  • [BSh] U. Bader, Y. Shalom: Factor and normal subgroup theorems for lattices in products of groups, Invent. Math. 163 (2006), 415-454. MR 2207022 (2006m:22017)
  • [CCJJV] P. Cherix, M. Cowling, P. Jolissaint, P. Julg, A. Valette: ``Groups with Haagerup property'', Birkh $ \ddot {\text{\rm a}}$user Verlag, Basel, Berlin, Boston, 2000. MR 1852148 (2002h:22007)
  • [Ch] E. Christensen: Subalgebras of a finite algebra, Math. Ann. 243 (1979), 17-29. MR 543091 (80i:46051)
  • [C1] A. Connes: Classification of injective factors, Ann. of Math. 104 (1976), 73-115. MR 0454659 (56:12908)
  • [C2] A. Connes: Sur la classification des facteurs de type II, C. R. Acad. Sci. Paris 281 (1975), 13-15. MR 0377534 (51:13706)
  • [C3] A. Connes: A type II$ _{1}$ factor with countable fundamental group, J. Operator Theory 4 (1980), 151-153. MR 587372 (81j:46099)
  • [C4] A. Connes: Classification des facteurs, Proc. Symp. Pure Math. 38, Amer. Math. Soc. 1982, 43-109. MR 679497 (84e:46068)
  • [CFW] A. Connes, J. Feldman, B. Weiss: An amenable equivalence relation is generated by a single transformation, Erg. Theory Dyn. Sys. 1 (1981), 431-450. MR 662736 (84h:46090)
  • [CJ1] A. Connes, V.F.R. Jones: A II$ _{1}$ factor with two non-conjugate Cartan subalgebras, Bull. Amer. Math. Soc. 6 (1982), 211-212. MR 640947 (83d:46074)
  • [CJ2] A. Connes, V.F.R. Jones: Property (T) for von Neumann algebras, Bull. London Math. Soc. 17 (1985), 57-62. MR 766450 (86a:46083)
  • [CW] A. Connes, B. Weiss: Property (T) and asymptotically invariant sequences, Israel J. Math. 37 (1980), 209-210. MR 599455 (82e:28023b)
  • [Dy] H. Dye: On groups of measure preserving transformations, II, Amer. J. Math. 85 (1963), 551-576. MR 0158048 (28:1275)
  • [FM] J. Feldman, C. C. Moore: Ergodic equivalence relations, cohomology and von Neumann algebras, I, II, Trans. AMS 234 (1977), 289-359. MR 0578656 (58:28261a); MR 0578730 (58:28261b)
  • [Fu1] A. Furman: Orbit equivalence rigidity, Ann. Math. 150 (1999), 1083-1108. MR 1740985 (2001a:22018)
  • [Fu2] A. Furman: On Popa's Cocycle Superrigidity Theorem, math.DS/0608364, preprint 2006.
  • [F] H. Furstenberg: Ergodic behavior of diagonal measures and a theorem of Szemeredi on arithmetic progressions, J. d'Analyse Math. 31 (1977) 204-256. MR 0498471 (58:16583)
  • [G1] D. Gaboriau: Cout des rélations d'équivalence et des groupes, Invent. Math. 139 (2000), 41-98. MR 1728876 (2001f:28030)
  • [G2] D. Gaboriau: Invariants $ L^2$ de rélations d'équivalence et de groupes, Publ. Math. IHES, 95 (2002), 93-150. MR 1953191 (2004b:22009)
  • [GP] D. Gaboriau, S. Popa: An Uncountable Family of Non Orbit Equivalent Actions of $ \mathbb{F}_{n}$, Journal of AMS 18 (2005), 547-559. MR 2138136 (2007b:37005)
  • [Ha] U. Haagerup: An example of a non-nuclear $ C^{*}$-algebra which has the metric approximation property, Invent. Math. 50 (1979), 279-293. MR 520930 (80j:46094)
  • [H] G. Hjorth: A converse to Dye's theorem, Trans AMS 357 (2004), 3083-3103. MR 2135736 (2005m:03093)
  • [HK] G. Hjorth, A. Kechris: ``Rigidity theorems for actions of product groups and countable Borel equivalence relations'', Memoirs of the Amer. Math. Soc. 177, No. 833, 2005. MR 2155451 (2006f:03078)
  • [I1] A. Ioana: A relative version of Connes $ \chi (M)$ invariant, Erg. Theory and Dyn. Systems 27 (2007), 1199-1213.
  • [I2] A. Ioana: Rigidity results for wreath product II$ _{1}$ factors, math.OA/0606574.
  • [I3] A. Ioana: Existence of uncountable families of orbit inequivalent actions for groups containing $ \mathbb{F}_{2}$, preprint 2007.
  • [IPeP] A. Ioana, J. Peterson, S. Popa: Amalgamated free products of w-rigid factors and calculation of their symmetry groups, math.OA/0505589, to appear in Acta Math.
  • [K] D. Kazhdan: Connection of the dual space of a group with the structure of its closed subgroups, Funct. Anal. and its Appl. 1 (1967), 63-65. MR 0209390 (35:288)
  • [Mc] D. McDuff: Central sequences and the hyperfinite factor, Proc. London Math. Soc. 21 (1970), 443-461. MR 0281018 (43:6737)
  • [Mo] N. Monod: Superrigidity for irreducible lattices and geometric splitting, Journal Amer. Math. Soc. 19 (2006) 781-814. MR 2219304 (2007b:22025)
  • [MoSh] N. Monod, Y. Shalom: Orbit equivalence rigidity and bounded cohomology, Annals of Math. 164 (2006). MR 2259246
  • [MvN1] F. Murray, J. von Neumann: On rings of operators, Ann. Math. 37 (1936), 116-229. MR 1503275
  • [MvN2] F. Murray, J. von Neumann: Rings of operators IV, Ann. Math. 44 (1943), 716-808. MR 0009096 (5:101a)
  • [OW] D. Ornstein, B. Weiss: Ergodic theory of amenable group actions I. The Rohlin Lemma, Bull. A.M.S. (1) 2 (1980), 161-164. MR 551753 (80j:28031)
  • [O1] N. Ozawa: Solid von Neumann algebras, Acta Math. 192 (2004), 111-117. MR 2079600 (2005e:46115)
  • [O2] N. Ozawa: A Kurosh type theorem for type II$ _{1}$ factors, Int. Math. Res. Notices, 2006, math.OA/0401121. MR 2211141 (2006m:46078)
  • [OP] N. Ozawa, S. Popa: Some prime factorization results for type II$ _{1}$ factors, Invent Math. 156 (2004), 223-234. MR 2052608 (2005g:46117)
  • [Pe] J. Peterson, $ L^{2}$-rigidity in von Neumann algebras, math.OA/0605033.
  • [P1] S. Popa: Cocycle and orbit equivalence superrigidity for malleable actions of $ w$-rigid groups, math.GR/0512646, to appear in Invent. Math. DOI: 10.1007/s00 222-007-0063-0.
  • [P2] S. Popa: Some computations of $ 1$-cohomology groups and construction of non orbit equivalent actions, Journal of the Inst. of Math. Jussieu 5 (2006), 309-332 (math.OA/0407199). MR 2225044 (2007b:37008)
  • [P3] S. Popa: Some rigidity results for non-commutative Bernoulli shifts, J. Fnal. Analysis 230 (2006), 273-328. MR 2186215 (2007b:46106)
  • [P4] S. Popa: Strong Rigidity of II$ _{1}$ Factors Arising from Malleable Actions of $ w$-Rigid Groups I, Invent. Math. 165 (2006), 369-408 (math.OA/0305306). MR 2231961 (2007f:46058)
  • [P5] S. Popa: Strong Rigidity of II$ _{1}$ Factors Arising from Malleable Actions of $ w$-Rigid Groups II, Invent. Math. 165 (2006), 409-452 (math.OA/0407137). MR 2231962 (2007h:46084)
  • [P6] S. Popa: Deformation and rigidity in the study of II$ _{1}$ factors, Mini-Course at College de France, Nov. 2004.
  • [P7] S. Popa: On Ozawa's property for free group factors, math.OA/0607561, Intern. Math. Res. Notices, Vol. 2007, rnm036, 10 pages, DOI: 10.1093/imrn/rnm036, June 22, 2007.
  • [P8] S. Popa: On a class of type II$ _{1}$ factors with Betti numbers invariants, Ann. Math. 163 (2006), 809-889 (math.OA/0209310). MR 2215135 (2006k:46097)
  • [P9] S. Popa: Deformation and rigidity for group actions and von Neumann algebras, in ``Proceedings of the International Congress of Mathematicians'' (Madrid 2006), Volume I, EMS Publishing House, Zurich 2006/2007, pp. 445-479.
  • [PS] S. Popa, R. Sasyk: On the cohomology of Bernoulli actions, Erg. Theory Dyn. Sys. 26 (2006), 1-11 (math.OA/0310211). MR 2297095
  • [PV] S. Popa, S. Vaes: Strong rigidity of generalized Bernoulli actions and computations of their symmetry groups, math.OA/0605456, to appear in Advances in Math.
  • [PoSt] R. Powers, E. Størmer: Free states of the canonical anticommutation relations, Comm. Math. Phys. 16 (1970), 1-33. MR 0269230 (42:4126)
  • [Sc] K. Schmidt: Asymptotically invariant sequences and an action of $ SL(2, \mathbb{Z})$ on the $ 2$-sphere, Israel. J. Math. 37 (1980), 193-208. MR 599454 (82e:28023a)
  • [Sh] Y. Shalom: Measurable group theory, In ``European Congress of Mathematics'' (Stockholm 2004), European Math Soc, Zurich 2005, 391-424. MR 2185757 (2006k:37007)
  • [Si] I. M. Singer: Automorphisms of finite factors, Amer. J. Math. 77 (1955), 117-133. MR 0066567 (16:597f)
  • [V] S. Vaes: Rigidity results for Bernoulli actions and their von Neumann algebras (after Sorin Popa) Séminaire Bourbaki, exposéé 961. Astérisque (to appear).
  • [Z1] R. Zimmer: Strong rigidity for ergodic actions of seimisimple Lie groups, Ann. of Math. 112 (1980), 511-529. MR 595205 (82i:22011)
  • [Z2] R. Zimmer: ``Ergodic Theory and Semisimple Groups'', Birkhauser, Boston, 1984. MR 776417 (86j:22014)
  • [Z3] R. Zimmer: Extensions of ergodic group actions, Illinois J. Math. 20 (1976), 373-409. MR 0409770 (53:13522)

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 46L35, 37A20, 22D25, 28D15

Retrieve articles in all journals with MSC (2000): 46L35, 37A20, 22D25, 28D15


Additional Information

Sorin Popa
Affiliation: Department of Mathematics, University of California Los Angeles, Los Angeles, California 90095-155505
Email: popa@math.ucla.edu

DOI: https://doi.org/10.1090/S0894-0347-07-00578-4
Keywords: von Neumann algebras, II$_{1}$ factors, Bernoulli actions, spectral gap, orbit equivalence, cocycles
Received by editor(s): October 24, 2006
Published electronically: September 26, 2007
Additional Notes: Research was supported in part by NSF Grant 0601082.
Article copyright: © Copyright 2007 American Mathematical Society

American Mathematical Society