Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)



Disk enumeration on the quintic 3-fold

Authors: R. Pandharipande, J. Solomon and J. Walcher
Journal: J. Amer. Math. Soc. 21 (2008), 1169-1209
MSC (2000): Primary 53D45, 14N35; Secondary 14J32
Published electronically: February 12, 2008
MathSciNet review: 2425184
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Holomorphic disk invariants with boundary in the real Lagrangian of a quintic 3-fold are calculated by localization and proven mirror transforms. A careful discussion of the underlying virtual intersection theory is included. The generating function for the disk invariants is shown to satisfy an extension of the Picard-Fuchs differential equations associated to the mirror quintic. The Ooguri-Vafa multiple cover formula is used to define virtually enumerative disk invariants. The results may also be viewed as providing a virtual enumeration of real rational curves on the quintic.

References [Enhancements On Off] (What's this?)

  • 1. P. Aspinwall and D. Morrison, Topological field theory and rational curves, Comm. Math. Phys. 151 (1993), 245-262. MR 1204770 (94h:32033)
  • 2. P. Candelas, X. de la Ossa, P. Green and L. Parkes, A pair of Calabi-Yau manifolds as an exactly soluble superconformal field theory, Nuclear Physics B359 (1991), 21-74.
  • 3. K. Fukaya, Y.-G. Oh, H. Ohto and K. Ono, Lagrangian intersection Floer theory, anomaly and obstruction, Kyoto University, preprint, 2006.
  • 4. K. Fukaya and K. Ono, Arnold conjecture and Gromov-Witten invariant, Topology 38 (1999), no. 5, 933-1048. MR 1688434 (2000j:53116)
  • 5. A. Givental, Equivariant Gromov-Witten invariants, Int. Math. Res. Notices 13 (1996), 613-663. MR 1408320 (97e:14015)
  • 6. A. Givental, Elliptic Gromov-Witten invariants and the generalized mirror conjecture, math.AG/9803053.
  • 7. T. Graber and E. Zaslow, Open string Gromov-Witten theory: calculation and a mirror theorem, hep-th/0109075.
  • 8. H. Hofer, K. Wysocki and E. Zehnder, A General Fredholm Theory I: A Splicing-Based Differential Geometry, J. Eur. Math. Soc. 9 (2007), 841-876. MR 2341834
  • 9. H. Hofer, K. Wysocki and E. Zehnder, A General Fredholm Theory II: Implicit Function Theorems, arXiv:0705.1310.
  • 10. S. Katz and M. Liu, Enumerative geometry of stable maps with Lagrangian boundary conditions and multiple covers of the disk, Adv. Theor. Math. Phys. 5 (2002), 1-49. MR 1894336 (2003e:14047)
  • 11. M. Kontsevich, Enumeration of rational curves via torus actions, in The moduli space of curves (R. Dijkgraaf, C. Faber, and G. van der Geer, eds.), Birkhäuser, 1995, 335-368. MR 1363062 (97d:14077)
  • 12. M. Kontsevich, Homological algebra of mirror symmetry. Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zurich, 1994), 120-139, Birkhäuser, Basel, 1995. MR 1403918 (97f:32040)
  • 13. B. Lian, K. Liu, and S.-T. Yau, Mirror principle I, Asian J. Math. 4 (1997), 729-763. MR 1621573 (99e:14062)
  • 14. M. Liu, Moduli of J-holomorphic curves with Lagrangian boundary conditions and open Gromov-Witten invariants for a $ S^1$-equivariant pair, math.SG/0210257.
  • 15. H. Ooguri and C. Vafa, Knot invariants and topological strings, Nucl. Phys. B 577 (2000), 419-438. MR 1765411 (2001i:81254)
  • 16. R. Pandharipande, Rational curves on hypersurfaces [after A. Givental], Séminaire Bourbaki, 50ème année, 1997-1998, Astérique, no. 848. MR 1685628 (2000e:14094)
  • 17. Y. Ruan and G. Tian, A mathematical theory of quantum cohomology, J. Differential Geom. 42 (1995), no. 2, 259-367. MR 1366548 (96m:58033)
  • 18. P. Seidel, personal communication based on a remark of D. Joyce and a talk of K. Fukaya at Northwestern in spring 2004.
  • 19. J. Solomon, Intersection theory on the moduli space of holomorphic curves with Lagrangian boundary conditions, math.SG/0606429.
  • 20. J. Solomon, Virtual manifolds, to appear.
  • 21. J. Walcher, Opening mirror symmetry on the quintic, hep-th/0605162.
  • 22. J.-Y. Welschinger, Invariants of real symplectic 4-manifolds and lower bounds in real enumerative geometry, Invent. Math. 162 (2005), 195-234. MR 2198329 (2006i:53123)
  • 23. J.-Y. Welschinger, Spinor states of real rational curves in real algebraic convex 3-manifolds and enumerative invariants, Duke Math. J. 127 (2005), 89-121. MR 2126497 (2005k:14121)
  • 24. K. Wehrheim and C. Woodward, Orientations for pseudo-holomorphic quilts, preprint.
  • 25. E. Witten, Chern-Simons gauge theory as a string theory, The Floer memorial volume, 637-678, Progr. Math., 133, Birkhäuser, Basel, 1995. arXiv: hep-th/9207094. MR 1362846 (97j:57052)

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 53D45, 14N35, 14J32

Retrieve articles in all journals with MSC (2000): 53D45, 14N35, 14J32

Additional Information

R. Pandharipande
Affiliation: Department of Mathematics, Princeton University, Princeton, New Jersey 08544

J. Solomon
Affiliation: School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540
Address at time of publication: Department of Mathematics, Princeton University, Princeton, New Jersey 08544

J. Walcher
Affiliation: School of Natural Science, Institute for Advanced Study, Princeton, New Jersey 08540

Received by editor(s): May 29, 2007
Published electronically: February 12, 2008
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society