Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

Constructing Weyl group multiple Dirichlet series


Authors: Gautam Chinta and Paul E. Gunnells
Journal: J. Amer. Math. Soc. 23 (2010), 189-215
MSC (2000): Primary 11F66, 11M41; Secondary 11F37, 11F70, 22E99
DOI: https://doi.org/10.1090/S0894-0347-09-00641-9
Published electronically: July 31, 2009
MathSciNet review: 2552251
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \Phi$ be a reduced root system of rank $ r$. A Weyl group multiple Dirichlet series for $ \Phi$ is a Dirichlet series in $ r$ complex variables $ s_1,\dots,s_r$, initially converging for $ {Re}(s_i)$ sufficiently large, that has meromorphic continuation to $ {\mathbb{C}}^r$ and satisfies functional equations under the transformations of $ {\mathbb{C}}^r$ corresponding to the Weyl group of $ \Phi$. A heuristic definition of such a series was given by Brubaker, Bump, Chinta, Friedberg, and Hoffstein, and they have been investigated in certain special cases by others.

In this paper we generalize results by Chinta and Gunnells to construct Weyl group multiple Dirichlet series by a uniform method and show in all cases that they have the expected properties.


References [Enhancements On Off] (What's this?)

  • [BB06a] Ben Brubaker and Daniel Bump.
    On Kubota's Dirichlet series.
    J. Reine Angew. Math., 598:159-184, 2006. MR 2270571 (2007k:11139)
  • [BB06b] Ben Brubaker and Daniel Bump.
    Residues of Weyl group multiple Dirichlet series associated to $ \widetilde{\rm GL}\sb {n+1}$.
    In Multiple Dirichlet series, automorphic forms, and analytic number theory, volume 75 of Proc. Sympos. Pure Math., pages 115-134. Amer. Math. Soc., Providence, RI, 2006. MR 2279933 (2008h:11044)
  • [BBC$ ^+$06] B. Brubaker, D. Bump, G. Chinta, S. Friedberg, and J. Hoffstein.
    Weyl group multiple Dirichlet series I.
    In S. Friedberg, D. Bump, D. Goldfeld, and J. Hoffstein, editors, Multiple Dirichlet Series, Automorphic Forms, and Analytic Number Theory, volume 75 of Proc. Sympos. Pure Math., pages 91-114, 2006. MR 2279932 (2007k:11073)
  • [BBFa] B. Brubaker, D. Bump, and S. Friedberg.
    Weyl group multiple Dirichlet series, Eisenstein series and crystal bases.
    Submitted.
  • [BBFb] B. Brubaker, D. Bump, and S. Friedberg.
    Weyl Group Multiple Dirichlet Series: Type A Combinatorial Theory.
    Submitted.
  • [BBF06] B. Brubaker, D. Bump, and S. Friedberg.
    Weyl group multiple Dirichlet series. II. The stable case.
    Invent. Math., 165(2):325-355, 2006. MR 2231959 (2007g:11056)
  • [BBF08] Ben Brubaker, Daniel Bump, and Solomon Friedberg.
    Twisted Weyl group multiple Dirichlet series: The stable case.
    In Eisenstein series and applications, volume 258 of Progr. Math., pages 1-26. Birkhäuser Boston, Boston, MA, 2008. MR 2402679
  • [BBFH07] B. Brubaker, D. Bump, S. Friedberg, and J. Hoffstein.
    Weyl group multiple Dirichlet series. III. Eisenstein series and twisted unstable $ A\sb r$.
    Ann. of Math. (2), 166(1):293-316, 2007. MR 2342698
  • [BFH91] Daniel Bump, Solomon Friedberg, and Jeffrey Hoffstein.
    $ p$-adic Whittaker functions on the metaplectic group.
    Duke Math. J., 63(2):379-397, 1991. MR 1115113 (92d:22024)
  • [Bru03] B. Brubaker.
    Analytic continuation for cubic multiple Dirichlet series.
    Thesis, Brown University, 2003.
  • [CFG08] Gautam Chinta, Solomon Friedberg, and Paul E. Gunnells.
    On the $ p$-parts of quadratic Weyl group multiple Dirichlet series.
    J. Reine Angew. Math., 623:1-23, 2008. MR 2458038
  • [CFH06] Gautam Chinta, Solomon Friedberg, and Jeffrey Hoffstein.
    Multiple Dirichlet series and automorphic forms.
    In Multiple Dirichlet series, automorphic forms, and analytic number theory, volume 75 of Proc. Sympos. Pure Math., pages 3-41. Amer. Math. Soc., Providence, RI, 2006. MR 2279929 (2008c:11072)
  • [CG] G. Chinta and P. E. Gunnells.
    Weyl group multiple Dirichlet series of type $ {A}_2$.
    Submitted to the Lang memorial volume.
  • [CG07] G. Chinta and P. E. Gunnells.
    Weyl group multiple Dirichlet series constructed from quadratic characters.
    Invent. Math., 167(2):327-353, 2007. MR 2270457 (2007j:11116)
  • [Chi05] G. Chinta.
    Mean values of biquadratic zeta functions.
    Invent. Math., 160(1):145-163, 2005. MR 2129710 (2006a:11108)
  • [Chi08] G. Chinta.
    Multiple Dirichlet series over rational function fields.
    Acta Arith., 132(4):377-391, 2008. MR 2413360 (2009e:11175)
  • [DGH03] Adrian Diaconu, Dorian Goldfeld, and Jeffrey Hoffstein.
    Multiple Dirichlet series and moments of zeta and $ L$-functions.
    Compositio Math., 139(3):297-360, 2003. MR 2041614 (2005a:11124)
  • [FF03] Benji Fisher and Solomon Friedberg.
    Sums of twisted $ \rm GL(2)$ $ L$-functions over function fields.
    Duke Math. J., 117(3):543-570, 2003. MR 1979053 (2004c:11072)
  • [FF04] Benji Fisher and Solomon Friedberg.
    Double Dirichlet series over function fields.
    Compos. Math., 140(3):613-630, 2004. MR 2041772 (2005a:11183)
  • [FHL03] Solomon Friedberg, Jeffrey Hoffstein, and Daniel Lieman.
    Double Dirichlet series and the $ n$-th order twists of Hecke $ L$-series.
    Math. Ann., 327(2):315-338, 2003. MR 2015073 (2005b:11182)
  • [GH85] Dorian Goldfeld and Jeffrey Hoffstein.
    Eisenstein series of $ {1\over 2}$-integral weight and the mean value of real Dirichlet $ L$-series.
    Invent. Math., 80(2):185-208, 1985. MR 788407 (86m:11029)
  • [Hof92] Jeffrey Hoffstein.
    Theta functions on the $ n$-fold metaplectic cover of $ {\rm SL}(2)$--the function field case.
    Invent. Math., 107(1):61-86, 1992. MR 1135464 (92k:11049)
  • [Hum90] James E. Humphreys.
    Reflection groups and Coxeter groups, volume 29 of Cambridge Studies in Advanced Mathematics.
    Cambridge University Press, Cambridge, 1990. MR 1066460 (92h:20002)
  • [IR90] Kenneth Ireland and Michael Rosen.
    A classical introduction to modern number theory, volume 84 of Graduate Texts in Mathematics.
    Springer-Verlag, New York, second edition, 1990. MR 1070716 (92e:11001)
  • [KP84] D. A. Kazhdan and S. J. Patterson.
    Metaplectic forms.
    Inst. Hautes Études Sci. Publ. Math., (59):35-142, 1984. MR 743816 (85g:22033)
  • [Kub71a] Tomio Kubota.
    Some number-theoretical results on real analytic automorphic forms.
    In Several Complex Variables, II (Proc. Internat. Conf., Univ. Maryland, College Park, Md., 1970), pages 87-96. Lecture Notes in Math., Vol. 185. Springer, Berlin, 1971. MR 0314768 (47:3320)
  • [Kub71b] Tomio Kubota.
    Some results concerning reciprocity law and real analytic automorphic functions.
    In 1969 Number Theory Institute (Proc. Sympos. Pure Math., Vol. XX, State Univ. New York, Stony Brook, N.Y., 1969), pages 382-395. Amer. Math. Soc., Providence, R.I., 1971. MR 0340221 (49:4976)
  • [Neu99] Jürgen Neukirch.
    Algebraic number theory, volume 322 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences].
    Springer-Verlag, Berlin, 1999.
    Translated from the 1992 German original and with a note by Norbert Schappacher, With a foreword by G. Harder. MR 1697859 (2000m:11104)
  • [Pat77a] S. J. Patterson.
    A cubic analogue of the theta series.
    J. Reine Angew. Math., 296:125-161, 1977. MR 0563068 (58:27795a)
  • [Pat77b] S. J. Patterson.
    A cubic analogue of the theta series. II.
    J. Reine Angew. Math., 296:217-220, 1977. MR 0563069 (58:27795b)
  • [Pat07] S. J. Patterson.
    Note on a paper of J. Hoffstein.
    Glasg. Math. J., 49(2):243-255, 2007. MR 2347258 (2008h:11039)

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 11F66, 11M41, 11F37, 11F70, 22E99

Retrieve articles in all journals with MSC (2000): 11F66, 11M41, 11F37, 11F70, 22E99


Additional Information

Gautam Chinta
Affiliation: Department of Mathematics, The City College of CUNY, New York, New York 10031
Email: chinta@sci.ccny.cuny.edu

Paul E. Gunnells
Affiliation: Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003
Email: gunnells@math.umass.edu

DOI: https://doi.org/10.1090/S0894-0347-09-00641-9
Keywords: Weyl group multiple Dirichlet series, Fourier coefficients of Eisenstein series, Weyl character formula, metaplectic groups
Received by editor(s): March 11, 2008
Published electronically: July 31, 2009
Additional Notes: Both authors thank the NSF for support.
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society