Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 

 

Existence of minimal models for varieties of log general type


Authors: Caucher Birkar, Paolo Cascini, Christopher D. Hacon and James McKernan
Journal: J. Amer. Math. Soc. 23 (2010), 405-468
MSC (2010): Primary 14E30
Published electronically: November 13, 2009
MathSciNet review: 2601039
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that the canonical ring of a smooth projective variety is finitely generated.


References [Enhancements On Off] (What's this?)

  • 1. V. Alexeev, C. Hacon, and Y. Kawamata, Termination of (many) $ 4$-dimensional log flips, Invent. Math. 168 (2007), no. 2, 433-448. MR 2289869 (2008f:14028)
  • 2. C. Birkar, Ascending chain condition for log canonical thresholds and termination of log flips, Duke Math. J. 136 (2007), no. 1. MR 2271298 (2007m:14016)
  • 3. D. Bump, Lie groups, Graduate Texts in Mathematics, vol. 225, Springer-Verlag, New York, 2004. MR 2062813 (2005f:22001)
  • 4. P. Eyssidieux, V. Guedj, and A. Zeriahi, Singular Kahler-Einstein metrics, J. Amer. Math. Soc. 22 (2009), no. 3, 607-639. MR 2505296
  • 5. O. Fujino, Termination of $ 4$-fold canonical flips, Publ. Res. Inst. Math. Sci. 40 (2004), no. 1, 231-237. MR 2030075 (2004k:14020)
  • 6. O. Fujino and S. Mori, A canonical bundle formula, J. Differential Geom. 56 (2000), no. 1, 167-188. MR 1863025 (2002h:14091)
  • 7. A. Gibney, S. Keel, and I. Morrison, Towards the ample cone of $ \overline M_{g,n}$, J. Amer. Math. Soc. 15 (2002), no. 2, 273-294. MR 1887636 (2003c:14029)
  • 8. C. Hacon and J. McKernan, Existence of minimal models for varieties of log general type II, J. Amer. Math. Soc, posted on November 13, 2009, PII: S 0894-0347(09)00651-1.
  • 9. -, Extension theorems and the existence of flips, Flips for 3-folds and 4-folds (Alessio Corti, ed.), Oxford University Press, 2007, pp. 79-100. MR 2352762 (2008j:14031)
  • 10. R. Hartshorne, Algebraic geometry, Springer-Verlag, 1977. MR 0463157 (57:3116)
  • 11. B. Hassett and D. Hyeon, Log canonical models for the moduli space of curves: First divisorial contraction, Trans. Amer. Math. Soc. 361 (2009), no. 8, 4471-4489. MR 2500894 (2009m:14039)
  • 12. Y. Hu and S. Keel, Mori dream spaces and GIT, Michigan Math. J. 48 (2000), 331-348, Dedicated to William Fulton on the occasion of his 60th birthday. MR 1786494 (2001i:14059)
  • 13. M. Kawakita, Inversion of adjunction on log canonicity, Invent. Math. 167 (2007), no. 1, 129-133. MR 2264806 (2008a:14025)
  • 14. Y. Kawamata, The Zariski decomposition of log-canonical divisors, Algebraic Geometry Bowdoin, Proc. Symp. Pure Math. 46 (1987), 1985, pp. 425-433. MR 927965 (89b:14052)
  • 15. -, Crepant blowing-up of $ 3$-dimensional canonical singularities and its application to degeneration of surfaces, Ann. of Math. (2) 127 (1988), 93-163. MR 924674 (89d:14023)
  • 16. -, On the length of an extremal rational curve, Invent. Math. 105 (1991), 609-611. MR 1117153 (92m:14026)
  • 17. -, Flops connect minimal models, Publ. Res. Inst. Math. Sci. 44 (2008), no. 2, 419-423. MR 2426353 (2009d:14011)
  • 18. Y. Kawamata, K. Matsuda, and K. Matsuki, Introduction to the minimal model program, Algebraic Geometry, Sendai (T. Oda, ed.), Kinokuniya-North-Holland, 1987, Adv. Stud. Pure Math., vol. 10, pp. 283-360. MR 946243 (89e:14015)
  • 19. J. Kollár, Flips, flops, minimal models, etc, Surveys in differential geometry (Cambridge, MA, 1990), Lehigh Univ., Bethlehem, PA, 1991, pp. 113-199. MR 1144527 (93b:14059)
  • 20. -, Effective base point freeness, Math. Ann. 296 (1993), no. 4, 595-605. MR 1233485 (94f:14004)
  • 21. J. Kollár et al., Flips and abundance for algebraic threefolds, Société Mathématique de France, Paris, 1992, Papers from the Second Summer Seminar on Algebraic Geometry held at the University of Utah, Salt Lake City, Utah, August 1991, Astérisque No. 211 (1992). MR 1225842 (94f:14013)
  • 22. J. Kollár and S. Mori, Birational geometry of algebraic varieties, Cambridge tracts in mathematics, vol. 134, Cambridge University Press, 1998. MR 1658959 (2000b:14018)
  • 23. R. Lazarsfeld, Positivity in algebraic geometry. II, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 49, Springer-Verlag, Berlin, 2004, Positivity for vector bundles, and multiplier ideals. MR 2095472 (2005k:14001b)
  • 24. Y. Manin, Moduli stacks $ \overline L_{g,S}$, Mosc. Math. J. 4 (2004), no. 1, 181-198, 311. MR 2074988 (2005g:14106)
  • 25. K. Matsuki, Termination of flops for $ 4$-folds, Amer. J. Math. 113 (1991), no. 5, 835-859. MR 1129294 (93e:14020)
  • 26. S. Mori, Flip theorem and the existence of minimal models for $ 3$-folds, J. Amer. Math. Soc. 1 (1988), no. 1, 117-253. MR 924704 (89a:14048)
  • 27. D. Mumford, Stability of projective varieties, Enseignement Math. (2) 23 (1977), no. 1-2, 39-110. MR 0450272 (56:8568)
  • 28. N. Nakayama, Zariski-decomposition and abundance, MSJ Memoirs, vol. 14, Mathematical Society of Japan, Tokyo, 2004. MR 2104208 (2005h:14015)
  • 29. V. Nikulin, The diagram method for $ 3$-folds and its application to the Kähler cone and Picard number of Calabi-Yau $ 3$-folds. I, Higher-dimensional complex varieties (Trento, 1994), de Gruyter, Berlin, 1996, With an appendix by V. V. Shokurov, pp. 261-328. MR 1463184 (98f:14033)
  • 30. T. Peternell, Towards a Mori theory on compact Kähler threefolds. II, Math. Ann. 311 (1998), no. 4, 729-764. MR 1637984 (2001a:32027)
  • 31. V. V. Shokurov, Three-dimensional log perestroikas, Izv. Ross. Akad. Nauk Ser. Mat. 56 (1992), no. 1, 105-203. MR 1162635 (93j:14012)
  • 32. -, $ 3$-fold log models, J. Math. Sci. 81 (1996), no. 3, 2667-2699, Algebraic geometry, 4. MR 1420223 (97i:14015)
  • 33. -, Letters of a bi-rationalist. I. A projectivity criterion, Birational algebraic geometry (Baltimore, MD, 1996), Contemp. Math., vol. 207, Amer. Math. Soc., Providence, RI, 1997, pp. 143-152. MR 1462930 (98i:14022)
  • 34. -, Prelimiting flips, Proc. Steklov Inst. of Math. 240 (2003), 82-219. MR 1993750 (2004k:14024)
  • 35. -, Letters of a bi-rationalist. V. Minimal log discrepancies and termination of log flips, Tr. Mat. Inst. Steklova 246 (2004), no. Algebr. Geom. Metody, Svyazi i Prilozh., 328-351. MR 2101303 (2006b:14019)
  • 36. Y-T. Siu, A General Non-Vanishing Theorem and an Analytic Proof of the Finite Generation of the Canonical Ring. arXiv:math.AG/0610740
  • 37. K. Ueno, Bimeromorphic geometry of algebraic and analytic threefolds, Algebraic Threefolds, Lecture Notes in Mathematics 947 (A. Conte, ed.), Springer, 1982, pp. 1-34. MR 672613 (84b:14017)

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2010): 14E30

Retrieve articles in all journals with MSC (2010): 14E30


Additional Information

Caucher Birkar
Affiliation: DPMMS, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WB, United Kingdom
Email: c.birkar@dpmms.cam.ac.uk

Paolo Cascini
Affiliation: Department of Mathematics, University of California at Santa Barbara, Santa Barbara, California 93106 and Imperial College London, 180 Queens Gate, London SW7 2A2, United Kingdom
Email: cascini@math.ucsb.edu, p.cascini@imperial.ac.uk

Christopher D. Hacon
Affiliation: Department of Mathematics, University of Utah, 155 South 1400 East, JWB 233, Salt Lake City, Utah 84112
Email: hacon@math.utah.edu

James McKernan
Affiliation: Department of Mathematics, University of California at Santa Barbara, Santa Barbara, California 93106 and Department of Mathematics, MIT, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
Email: mckernan@math.ucsb.edu, mckernan@math.mit.edu

DOI: http://dx.doi.org/10.1090/S0894-0347-09-00649-3
Received by editor(s): August 13, 2008
Published electronically: November 13, 2009
Additional Notes: The first author was partially supported by EPSRC grant GR/S92854/02
The second author was partially supported by NSF research grant no: 0801258
The third author was partially supported by NSF research grant no: 0456363 and an AMS Centennial fellowship
The fourth author was partially supported by NSA grant no: H98230-06-1-0059 and NSF grant no: 0701101 and would like to thank Sogang University and Professor Yongnam Lee for their generous hospitality, where some of the work for this paper was completed
All authors would like to thank Dan Abramovich, Valery Alexeev, Florin Ambro, Tommaso de Fernex, Stephane Dreul, Seán Keel, Kalle Karu, János Kollár, Sándor Kovács, Michael McQuillan, Shigefumi Mori, Martin Olsson, Genia Tevelev, Burt Totaro, Angelo Vistoli and Chengyang Xu for answering many of our questions and pointing out some errors in an earlier version of this paper. They would also like to thank the referee for some useful comments.
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.