Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 

 

On the ill-posedness of the Prandtl equation


Authors: David Gérard-Varet and Emmanuel Dormy
Journal: J. Amer. Math. Soc. 23 (2010), 591-609
MSC (2010): Primary 35-XX; Secondary 76-XX
Published electronically: November 24, 2009
MathSciNet review: 2601044
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The concern of this paper is the Cauchy problem for the Prandtl equation. This problem is known to be well-posed for analytic data, or for data with monotonicity properties. We prove here that it is linearly ill-posed in Sobolev type spaces. The key of the analysis is the construction, at high tangential frequencies, of unstable quasimodes for the linearization around solutions with nondegenerate critical points. Interestingly, the strong instability is due to viscosity, which is coherent with well-posedness results obtained for the inviscid version of the equation. A numerical study of this instability is also provided.


References [Enhancements On Off] (What's this?)

  • 1. Yann Brenier, Homogeneous hydrostatic flows with convex velocity profiles, Nonlinearity 12 (1999), no. 3, 495-512. MR 1690189 (2000b:35205)
  • 2. Earl A. Coddington and Norman Levinson, Theory of ordinary differential equations, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1955. MR 0069338 (16,1022b)
  • 3. Weinan E, Boundary layer theory and the zero-viscosity limit of the Navier-Stokes equation, Acta Math. Sin. (Engl. Ser.) 16 (2000), no. 2, 207-218. MR 1778702 (2001d:76037)
  • 4. Weinan E and Bjorn Engquist, Blowup of solutions of the unsteady Prandtl's equation, Comm. Pure Appl. Math. 50 (1997), no. 12, 1287-1293. MR 1476316 (99c:35196)
  • 5. Emmanuel Grenier, On the derivation of homogeneous hydrostatic equations, M2AN Math. Model. Numer. Anal. 33 (1999), no. 5, 965-970. MR 1726718 (2000j:76051)
  • 6. -, On the nonlinear instability of Euler and Prandtl equations, Comm. Pure Appl. Math. 53 (2000), no. 9, 1067-1091. MR 1761409 (2001i:76056)
  • 7. E. Guyon, J.P. Hulin, and L. Petit, Hydrodynamique physique, EDP Sciences, vol. 142, CNRS Editions, Paris, 2001.
  • 8. Lan Hong and John K. Hunter, Singularity formation and instability in the unsteady inviscid and viscous Prandtl equations, Commun. Math. Sci. 1 (2003), no. 2, 293-316. MR 1980477 (2005k:76035)
  • 9. Tosio Kato, Perturbation theory for linear operators, Classics in Mathematics, Springer-Verlag, Berlin, 1995, Reprint of the 1980 edition. MR 1335452 (96a:47025)
  • 10. Maria Carmela Lombardo, Marco Cannone, and Marco Sammartino, Well-posedness of the boundary layer equations, SIAM J. Math. Anal. 35 (2003), no. 4, 987-1004 (electronic). MR 2049030 (2005a:76137)
  • 11. O. A. Oleinik and V. N. Samokhin, Mathematical models in boundary layer theory, Applied Mathematics and Mathematical Computation, vol. 15, Chapman & Hall/CRC, Boca Raton, FL, 1999. MR 1697762 (2000c:76021)
  • 12. L. Prandtl, Uber flüssigkeits-bewegung bei sehr kleiner reibung., Actes du 3ème Congrés international dse Mathématiciens, Heidelberg, Teubner, Leipzig, 1904, pp. 484-491.
  • 13. Marco Sammartino and Russel E. Caflisch, Zero viscosity limit for analytic solutions, of the Navier-Stokes equation on a half-space. I. Existence for Euler and Prandtl equations, Comm. Math. Phys. 192 (1998), no. 2, 433-461. MR 1617542 (99d:35129a)
  • 14. -, Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space. II. Construction of the Navier-Stokes solution, Comm. Math. Phys. 192 (1998), no. 2, 463-491. MR 1617538 (99d:35129b)
  • 15. Zhouping Xin and Liqun Zhang, On the global existence of solutions to the Prandtl's system, Adv. Math. 181 (2004), no. 1, 88-133. MR 2020656 (2005f:35219)

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2010): 35-XX, 76-XX

Retrieve articles in all journals with MSC (2010): 35-XX, 76-XX


Additional Information

David Gérard-Varet
Affiliation: DMA/CNRS, Ecole Normale Supérieure, 45 rue d’Ulm,75005 Paris, France

Emmanuel Dormy
Affiliation: ENS/IPGP/CNRS, Ecole Normale Supérieure, 29 rue Lhomond, 75005 Paris, France

DOI: https://doi.org/10.1090/S0894-0347-09-00652-3
Received by editor(s): April 2, 2009
Published electronically: November 24, 2009
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.