Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 

 

Quantization of quasi-Lie bialgebras


Authors: Benjamin Enriquez and Gilles Halbout
Journal: J. Amer. Math. Soc. 23 (2010), 611-653
MSC (2010): Primary 18D10, 17B37
Published electronically: January 15, 2010
MathSciNet review: 2629982
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We construct quantization functors of quasi-Lie bialgebras. We establish a bijection between this set of quantization functors, modulo equivalence and twist equivalence, and the set of quantization functors of Lie bialgebras, modulo equivalence. This is based on the acyclicity of the kernels of natural morphisms between the universal versions of Lie algebra cohomology complexes for quasi-Lie and Lie bialgebras. The proof of this acyclicity consists of several steps, ending up in the acyclicity of a complex related to free Lie algebras, namely, the universal version of the Lie algebra cohomology complex of a Lie algebra in its enveloping algebra, viewed as the left regular module. Using the same arguments, we also prove the compatibility of quantization functors of quasi-Lie bialgebras with twists, which allows us to recover our earlier results on compatibility of quantization functors with twists in the case of Lie bialgebras.


References [Enhancements On Off] (What's this?)

  • [AT] A. Alekseev, C. Torossian, The Kashiwara-Vergne conjecture and Drinfeld's associators, preprint arXiv:0802:4300.
  • [B] N. Bourbaki, Éléments de mathématique. Fasc. XXXVII. Groupes et algèbres de Lie. Chapitre II: Algèbres de Lie libres. Actualités Scientifiques et Industrielles, No. 1349. Hermann, Paris, 1972. MR 0573068 (58:28083a)
  • [Dr1] V. Drinfeld, Quantum groups, Proc. Intern. Congress of Math. (Berkeley, 1986) (1987), 798-820. MR 934283 (89f:17017)
  • [Dr2] V. Drinfeld, Quasi-Hopf algebras, Leningrad Math. J. 1 (1990), no. 6, 1419-1457. MR 1047964 (91b:17016)
  • [Dr3] V. Drinfeld, On quasitriangular quasi-Hopf algebras and on a group that is closely connected with $ \operatorname{Gal}(\bar{\mathbb{Q}}/\mathbb{Q})$, Leningrad Math. J. 2 (1991), no. 4, 829-860. MR 1080203 (92f:16047)
  • [Dr4] V. Drinfeld, On some unsolved problems in quantum group theory. Lecture Notes in Math., 1510, Springer, Berlin, 1992. MR 1183474 (94a:17006)
  • [E] B. Enriquez, On some universal algebras associated to the category of Lie bialgebras, Adv. Math. 164 (2001), no. 1, 1-23. MR 1870510 (2002k:17039)
  • [EH] B. Enriquez, G. Halbout, Quantization of coboundary Lie bialgebras, preprint arXiv:math/0603740, to appear in Annals of Math.
  • [EK1] P. Etingof, D. Kazhdan, Quantization of Lie bialgebras. I, Selecta Math. (N.S.) 2 (1996), no. 1, 1-41. MR 1403351 (97f:17014)
  • [EK2] P. Etingof, D. Kazhdan, Quantization of Lie bialgebras. II, III, Selecta Math. (N.S.) 4 (1998), no. 2, 213-231, 233-269. MR 1669953 (2000i:17033)
  • [Gav] F. Gavarini, The quantum duality principle, Ann. Inst. Fourier (Grenoble) 52 (2002), no. 3, 809-834. MR 1907388 (2003d:17016)
  • [GS] M. Gerstenhaber, S.D. Schack, Bialgebra cohomology, deformations, and quantum groups, Proc. Nat. Acad. Sci. USA 87 (1990), no. 1, 478-481. MR 1031952 (90j:16062)
  • [KS] B. Kostant, S. Sternberg, Symplectic reduction, BRS cohomology, and infinite-dimensional Clifford algebras, Ann. Physics 176 (1987), no. 1, 49-113. MR 893479 (88m:58057)
  • [LR] P. Lecomte, C. Roger, Modules et cohomologies des bigèbres de Lie, C. R. Acad. Sci. Paris Sér. I Math. 310 (1990), no. 6, 405-410. MR 1046522 (91c:17013)
  • [McL] S. Mac Lane, Categorical algebra, Bull. Amer. Math. Soc. 71 (1965), 40-106. MR 0171826 (30:2053)
  • [Pos] L. Positselski, letter to M. Finkelberg and R. Bezrukavnikov (in Russian), 1995.
  • [ShSt] S. Shnider, S. Sternberg, Quantum groups. From coalgebras to Drinfeld algebras. A guided tour. Graduate Texts in Math. Phys. II, Int. Press, Cambridge, MA, 1993. MR 1287162 (95e:17022)

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2010): 18D10, 17B37

Retrieve articles in all journals with MSC (2010): 18D10, 17B37


Additional Information

Benjamin Enriquez
Affiliation: Institut de Recherche Matématique Avancée (CNRS) et Université de Strasbourg, 7, rue René Descartes, F-67084 Strasbourg, France
Email: enriquez@math.u-strasbg.fr

Gilles Halbout
Affiliation: Institut de Mathématiques, Université Montpellier 2, Place E. Bataillon, F-34095 Montpellier, France
Email: ghalbout@math.univ-montp2.fr

DOI: https://doi.org/10.1090/S0894-0347-10-00654-5
Received by editor(s): April 10, 2008
Published electronically: January 15, 2010
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.