Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

   
 

 

On abelian birational sections


Authors: Hélène Esnault and Olivier Wittenberg
Journal: J. Amer. Math. Soc. 23 (2010), 713-724
MSC (2010): Primary 14G32; Secondary 14C25, 14G25, 14G20
Published electronically: January 22, 2010
MathSciNet review: 2629985
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For a smooth and geometrically irreducible variety $ X$ over a field $ k$, the quotient of the absolute Galois group $ G_{k(X)}$ by the commutator subgroup of $ G_{\bar k(X)}$ projects onto $ G_k$. We investigate the sections of this projection. We show that such sections correspond to ``infinite divisions'' of the elementary obstruction of Colliot-Thélène and Sansuc. If $ k$ is a number field and the Tate-Shafarevich group of the Picard variety of $ X$ is finite, then such sections exist if and only if the elementary obstruction vanishes. For curves this condition also amounts to the existence of divisors of degree $ 1$. Finally we show that the vanishing of the elementary obstruction is not preserved by extensions of scalars.


References [Enhancements On Off] (What's this?)

  • 1. M. Borovoi, J.-L. Colliot-Thélène, and A. N. Skorobogatov, The elementary obstruction and homogeneous spaces, Duke Math. J. 141 (2008), no. 2, 321-364. MR 2376817 (2009f:14040)
  • 2. H. Cartan and S. Eilenberg, Homological algebra, Princeton University Press, Princeton, NJ, 1956. MR 0077480 (17:1040e)
  • 3. M. Çiperiani and D. Krashen, Relative Brauer groups of genus $ 1$ curves, preprint, 2007.
  • 4. J.-L. Colliot-Thélène, Conjectures de type local-global sur l'image des groupes de Chow dans la cohomologie étale, Algebraic $ K$-theory (Seattle, WA, 1997), Proc. Sympos. Pure Math., vol. 67, Amer. Math. Soc., Providence, RI, 1999, pp. 1-12. MR 1743234 (2001d:11067)
  • 5. J.-L. Colliot-Thélène and J.-J. Sansuc, La descente sur les variétés rationnelles. II, Duke Math. J. 54 (1987), no. 2, 375-492. MR 899402 (89f:11082)
  • 6. P. Deligne, Le groupe fondamental de la droite projective moins trois points, Galois groups over $ {\bf Q}$ (Berkeley, CA, 1987), MSRI Publ., vol. 16, Springer, New York, 1989, pp. 79-297. MR 1012168 (90m:14016)
  • 7. H. Esnault and O. Wittenberg, Remarks on cycle classes of sections of the arithmetic fundamental group, Mosc. Math. J. 9 (2009), no. 3, 451-467.
  • 8. A. Grothendieck, letter to Faltings dated June 27, 1983 (in German), published in: Geometric Galois actions, Vol. 1, London Math. Soc. Lecture Note Ser., vol. 242, Cambridge Univ. Press, Cambridge, 1997, pp. 49-58. MR 1483108 (99c:14023)
  • 9. -, Le groupe de Brauer II: Théorie cohomologique, Dix exposés sur la cohomologie des schémas, Advanced studies in pure mathematics, vol. 3, Masson & North-Holland, Paris, Amsterdam, 1968, pp. 67-87. MR 0244270 (39:5586b)
  • 10. D. Harari and T. Szamuely, Local-global principles for $ 1$-motives, Duke Math. J. 143 (2008), no. 3, 531-557. MR 2423762 (2009i:14026)
  • 11. -, Galois sections for abelianized fundamental groups, Math. Ann. 344 (2009), no. 4, 779-800, with an appendix by E. V. Flynn. MR 2507624
  • 12. J. Koenigsmann, On the `section conjecture' in anabelian geometry, J. reine angew. Math. 588 (2005), 221-235. MR 2196734 (2006h:14032)
  • 13. S. Lichtenbaum, Duality theorems for curves over $ p$-adic fields, Invent. math. 7 (1969), 120-136. MR 0242831 (39:4158)
  • 14. J. S. Milne, Arithmetic duality theorems, Perspectives in Mathematics, vol. 1, Academic Press Inc., Boston, MA, 1986. MR 881804 (88e:14028)
  • 15. F. Pop, On the birational $ p$-adic section conjecture, to appear in Compositio Math.
  • 16. S. Saito, Some observations on motivic cohomology of arithmetic schemes, Invent. math. 98 (1989), no. 2, 371-404. MR 1016270 (90k:11077)
  • 17. C. Scheiderer, Real and étale cohomology, Lecture Notes in Mathematics, vol. 1588, Springer-Verlag, Berlin, 1994. MR 1321819 (96c:14018)
  • 18. J.-P. Serre, Cohomologie galoisienne, fifth ed., Lecture Notes in Mathematics, vol. 5, Springer-Verlag, Berlin, 1994. MR 1324577 (96b:12010)
  • 19. A. N. Skorobogatov, Torsors and rational points, Cambridge Tracts in Mathematics, vol. 144, Cambridge University Press, Cambridge, 2001. MR 1845760 (2002d:14032)
  • 20. E. Witt, Zerlegung reeller algebraischer Funktionen in Quadrate. Schiefkörper über reellem Funktionenkörper, J. reine angew. Math. 171 (1934), 4-11.
  • 21. O. Wittenberg, On Albanese torsors and the elementary obstruction, Math. Ann. 340 (2008), no. 4, 805-838. MR 2372739 (2008m:14022)

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2010): 14G32, 14C25, 14G25, 14G20

Retrieve articles in all journals with MSC (2010): 14G32, 14C25, 14G25, 14G20


Additional Information

Hélène Esnault
Affiliation: Universität Duisburg–Essen, Mathematik, 45117 Essen, Germany
Email: esnault@uni-due.de

Olivier Wittenberg
Affiliation: Département de mathématiques et applications, École normale supérieure, 45 rue d’Ulm, 75320 Paris Cedex 05, France
Email: wittenberg@dma.ens.fr

DOI: http://dx.doi.org/10.1090/S0894-0347-10-00660-0
Received by editor(s): February 18, 2009
Received by editor(s) in revised form: November 28, 2009
Published electronically: January 22, 2010
Additional Notes: This research was supported in part by the DFG Leibniz Preis, the SFB/TR 45, and the ERC/Advanced Grant 226257
Article copyright: © Copyright 2010 by H. Esnault and O. Wittenberg