Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 

 

$ \mathcal{B}(\ell^p)$ is never amenable


Author: Volker Runde
Journal: J. Amer. Math. Soc. 23 (2010), 1175-1185
MSC (2010): Primary 47L10; Secondary 46B07, 46B45, 46H20
Published electronically: March 26, 2010
MathSciNet review: 2669711
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that if $ E$ is a Banach space with a basis satisfying a certain condition, then the Banach algebra $ \ell^\infty({\mathcal K}(\ell^2 \oplus E))$ is not amenable; in particular, this is true for $ E = \ell^p$ with $ p \in (1,\infty)$. As a consequence, $ \ell^\infty({\mathcal K}(E))$ is not amenable for any infinite-dimensional $ {\mathcal L}^p$-space. This, in turn, entails the non-amenability of $ {\mathcal B}(\ell^p(E))$ for any $ {\mathcal L}^p$-space $ E$, so that, in particular, $ {\mathcal B}(\ell^p)$ and $ {\mathcal B}(L^p[0,1])$ are not amenable.


References [Enhancements On Off] (What's this?)

  • [A-H] S. A. ARGYROS and R. G. HAYDON, A hereditarily indecomposable $ \mathcal{L}_\infty$-space that solves the scalar-plus-compact problem. arXiv:0903.3921.
  • [B-dlH-V] B. BEKKA, P. DE LA HARPE, and A. VALETTE, Kazhdan's Property $ (T)$. New Mathematical Monographs 11, Cambridge University Press, Cambridge, 2008. MR 2415834 (2009i:22001)
  • [D-R] M. DAWS and V. RUNDE, Can $ {\mathcal B}(\ell^p)$ ever be amenable? Studia Math. 188 (2008), 151-174. Erratum. Studia Math. 195 (2009), 297-298. MR 2431000; MR 2559179
  • [D-J-T] J. DIESTEL, H. JARCHOW, and A. TONGE, Absolutely Summing Operators. Cambridge Studies in Advanced Mathematics 43, Cambridge University Press, Cambridge-New York-Melbourne, 1995. MR 1342297 (96i:46001)
  • [Gor] Y. GORDON, On $ p$-absolutely summing constants of Banach spaces. Israel J. Math. 7 (1969), 151-163. MR 0250028 (40:3269)
  • [G-J-W] N. GRøNBæK, B. E. JOHNSON, and G. A. WILLIS, Amenability of Banach algebras of compact operators. Israel J. Math. 87 (1994), 289-324. MR 1286832 (95k:46078)
  • [Hel] A. YA. HELEMSKIĬ, The Homology of Banach and Topological Algebras (translated from the Russian). Mathematics and Its Applications (Soviet Series) 41, Kluwer Academic Publishers Group, Dordrecht, 1989. MR 1093462 (92d:46178)
  • [Joh 1] B. E. JOHNSON, Cohomology in Banach algebras. Mem. Amer. Math. Soc. 127 (1972). MR 0374934 (51:11130)
  • [Joh 2] B. E. JOHNSON, Approximate diagonals and cohomology of certain annihilator Banach algebras. Amer. J. Math. 94 (1972), 685-698. MR 0317050 (47:5598)
  • [L-P] J. LINDENSTRAUSS and A. PEŁCZYŃSKI, Absolutely summing operators in $ {\mathcal L}_p$-spaces and their applications. Studia Math. 29 (1968), 275-326. MR 0231188 (37:6743)
  • [L-T] J. LINDENSTRAUSS and L. TZAFRIRI, Classical Banach Spaces, I. Ergebnisse der Mathematik und ihrer Grenzgebiete 92, Springer Verlag, Berlin-Heidelberg-New York, 1977. MR 0500056 (58:17766)
  • [Oza] N. OZAWA, A note on non-amenability of $ {\mathcal B}(\ell_p)$ for $ p=1,2$. Internat. J. Math. 15 (2004), 557-565. MR 2078880 (2005g:46135)
  • [Pis] G. PISIER, On Read's proof that $ B(l_1)$ is not amenable. In: Geometric Aspects of Functional Analysis, pp. 269-275. Lecture Notes in Mathematics 1850, Springer Verlag, Berlin-Heidelberg-New York, 2004. MR 2087163 (2005g:46136)
  • [Rea 1] C. J. READ, Commutative, radical amenable Banach algebras. Studia Math. 140 (2000), 199-212. MR 1784151 (2001f:46078)
  • [Rea 2] C. J. READ, Relative amenability and the non-amenability of $ B(l^1)$. J. Austral. Math. Soc. 80 (2006), 317-333. MR 2236040 (2007h:46062)
  • [Run 1] V. RUNDE, The structure of contractible and amenable Banach algebras. In: E. ALBRECHT and M. MATHIEU (eds.), Banach Algebras '97 (Blaubeuren), pp. 415-430, de Gruyter, Berlin, 1998. MR 1656619 (2000d:46062)
  • [Run 2] V. RUNDE, Lectures on Amenability. Lecture Notes in Mathematics 1774, Springer Verlag, Berlin-Heidelberg-New York, 2002. MR 1874893 (2003h:46001)
  • [T-J] N. TOMCZAK-JAEGERMANN, Banach-Mazur Distances and Finite-Dimensional Operator Ideals. Pitman Monographs and Surveys in Pure and Applied Mathematics 38, Longman Scientific & Technical, Essex, 1988. MR 993774 (90k:46039)
  • [Was] S. WASSERMANN, On tensor products of certain group $ C^\ast$-algebras. J. Functional Anal. 23 (1976), 239-254. MR 0425628 (54:13582)
  • [Woj] P. WOJTASZCZYK, Banach Spaces for Analysts. Cambridge Studies in Advanced Mathematics 25, Cambridge University Press, Cambridge, 1991. MR 1144277 (93d:46001)

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2010): 47L10, 46B07, 46B45, 46H20

Retrieve articles in all journals with MSC (2010): 47L10, 46B07, 46B45, 46H20


Additional Information

Volker Runde
Affiliation: Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1
Email: vrunde@ualberta.ca

DOI: http://dx.doi.org/10.1090/S0894-0347-10-00668-5
Keywords: Amenability, Kazhdan's property $(T)$, ${\mathcal L}^p$-spaces
Received by editor(s): July 4, 2009
Received by editor(s) in revised form: December 5, 2009, December 7, 2009, and December 8, 2009
Published electronically: March 26, 2010
Additional Notes: The author’s research was supported by NSERC
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.