Fluctuation exponent of the KPZ/stochastic Burgers equation

Authors:
M. Balázs, J. Quastel and T. Seppäläinen

Journal:
J. Amer. Math. Soc. **24** (2011), 683-708

MSC (2010):
Primary 60H15, 82C22; Secondary 35R60, 60K35

DOI:
https://doi.org/10.1090/S0894-0347-2011-00692-9

Published electronically:
January 19, 2011

MathSciNet review:
2784327

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the stochastic heat equation

**1.**T. Alberts, K. Khanin, and J. Quastel.

The intermediate disorder regime for directed polymers in dimension 1 + 1.*Phys. Rev. Lett.*, 105, 2010.**2.**J. Baik, P. Deift, and K. Johansson.

On the distribution of the length of the longest increasing subsequence of random permutations.*J. Amer. Math. Soc.*, 12:1119- 1178, 1999. MR**1682248 (2000e:05006)****3.**M. Balázs and T. Seppäläinen.

Exact connections between current fluctuations and the second class particle in a class of deposition models.*J. Stat. Phys.*, 127(2), 2007. MR**2314355 (2008e:82056)****4.**M. Balázs and T. Seppäläinen.

Fluctuation bounds for the asymmetric simple exclusion process.*ALEA Lat. Am. J. Probab. Math. Stat.*, 6:1-24, 2009. MR**2485877 (2010c:60280)****5.**A.-L. Barabasi and H. E. Stanley.*Fractal concepts in surface growth*.

Cambridge University Press, Cambridge, 1995. MR**1600794 (99b:82072)****6.**Lorenzo Bertini and Giambattista Giacomin.

Stochastic Burgers and KPZ equations from particle systems.*Comm. Math. Phys.*, 183(3):571-607, 1997. MR**1462228 (99e:60212)****7.**S. Bezerra, S. Tindel, and F. Viens.

Superdiffusivity for a Brownian polymer in a continuous Gaussian environment.*Ann. Probab.*, 36(5):1642-1675, 2008. MR**2440919 (2010a:60352)****8.**P. Billingsley.*Convergence of probability measures*.

Wiley, 1968. MR**0233396 (38:1718)****9.**Terence Chan.

Scaling limits of Wick ordered KPZ equation.*Comm. Math. Phys.*, 209(3):671-690, 2000. MR**1743612 (2001f:60072)****10.**P. L. Ferrari and H. Spohn.

Scaling limit for the space-time covariance of the stationary totally asymmetric simple exclusion process.*Comm. Math. Phys.*, 265(1):1-44, 2006. MR**2217295 (2007g:82038a)****11.**Dieter Forster, David R. Nelson, and Michael J. Stephen.

Large-distance and long-time properties of a randomly stirred fluid.*Phys. Rev. A (3)*, 16(2):732-749, 1977. MR**0459274 (56:17468)****12.**H. Holden, B. Øksendal, J. Ubøe, and T. Zhang.*Stochastic partial differential equations. A modeling, white noise functional approach*.

Birkhäuser Boston, Boston, 1996. MR**1408433 (98f:60124)****13.**K. Johansson.

Transversal fluctuations for increasing subsequences on the plane.*Probab. Theory Related Fields*, 116:445-456, 2000. MR**1757595 (2001e:60210)****14.**K. Kardar, G. Parisi, and Y.Z. Zhang.

Dynamic scaling of growing interfaces.*Phys. Rev. Lett.*, 56:889-892, 1986.**15.**T. Kriecherbauer and J. Krug.

A pedestrian's view on interacting particle systems, KPZ universality, and random matrices.*J. Phys. A: Math. Theor.*, 43, 2001.**16.**H. Krug and H. Spohn.*Kinetic roughening of growing surfaces*, pages 412-525.

Cambridge Univ. Press., 1991.**17.**C. Licea, C. Newman, and M. Piza.

Superdiffusivity in first-passage percolation.*Prob. Th. Rel. Fields*, 106:559-591, 1996. MR**1421992 (98a:60151)****18.**O. Mejane.

Upper bound of a volume exponent for directed polymers in a random environment.*Ann. Inst. H. Poincaré Probab. Statist.*, 40:299-308, 2004. MR**2060455 (2005e:60239)****19.**C. Mueller.

On the support of solutions to the heat equation with noise.*Stochastics Stochastics Rep.*, 37(4):225-245, 1991. MR**1149348 (93e:60122)****20.**M. Petermann.*Superdiffusivity of directed polymers in random environment*.

Ph.D. thesis, University of Zürich, 2000.**21.**M. Piza.

Directed polymers in a random environment: Some results on fluctuations.*J. Statist. Phys.*, 89:581-603, 1997. MR**1484057 (99d:82036)****22.**M. Prähofer and H. Spohn.*Current fluctuations for the totally asymmetric simple exclusion process*.

Progress in Probability. Birkhäuser, 2002. MR**1901953 (2003e:60224)****23.**G. Da Prato and J. Zabczyk.*Stochastic equations in infinite dimensions*.

Cambridge University Press, Cambridge, 1992. MR**1207136 (95g:60073)****24.**J. Quastel and B. Valkó.

superdiffusivity of finite-range asymmetric exclusion processes on .*Comm. Math. Phys.*, 273(2):379-394, 2007. MR**2318311 (2008h:60414)****25.**T. Seppäläinen.

Scaling for a one-dimensional directed polymer with boundary conditions.*To appear in Ann. Probab.,*, 2009.`arXiv:0911.2446`**26.**T. Seppäläinen and B. Valkó.

Bounds for scaling exponents for a 1+1 dimensional directed polymer in a Brownian environment.*To appear in Alea,*, 2010.`arXiv:1006.4864`**27.**J. Walsh.*An introduction to stochastic partial differential equations*, volume 1180 of*Lecture Notes in Mathematics*, pages 265-439.

Springer-Verlag, 1986. MR**876085 (88a:60114)**

Retrieve articles in *Journal of the American Mathematical Society*
with MSC (2010):
60H15,
82C22,
35R60,
60K35

Retrieve articles in all journals with MSC (2010): 60H15, 82C22, 35R60, 60K35

Additional Information

**M. Balázs**

Affiliation:
Department of Stochastics, Budapest University of Technology and Economics, 1 Egry Jozsef u, H ep V 7, Budapest, 1111 Hungary

Email:
balazs@math.bme.hu

**J. Quastel**

Affiliation:
Departments of Mathematics and Statistics, University of Toronto, 40 St. George Street, Room 6290, Toronto, ON M5S 1L2 Canada

Email:
quastel@math.toronto.edu

**T. Seppäläinen**

Affiliation:
Department of Mathematics, University of Wisconsin–Madison, 480 Lincoln Drive, Madison, Wisconsin 53706-1388

Email:
seppalai@math.wisc.edu

DOI:
https://doi.org/10.1090/S0894-0347-2011-00692-9

Keywords:
Kardar-Parisi-Zhang equation,
stochastic heat equation,
stochastic Burgers equation,
random growth,
asymmetric exclusion process,
anomalous fluctuations,
directed polymers.

Received by editor(s):
October 16, 2009

Received by editor(s) in revised form:
October 28, 2010

Published electronically:
January 19, 2011

Additional Notes:
The first author is supported by the Hungarian Scientific Research Fund (OTKA) grants K-60708 and F-67729, by the Bolyai Scholarship of the Hungarian Academy of Sciences, and by the Morgan Stanley Mathematical Modeling Center.

The second author is supported by the Natural Sciences and Engineering Research Council of Canada.

The third author is supported by the National Science Foundation grant DMS-0701091 and by the Wisconsin Alumni Research Foundation.

Article copyright:
© Copyright 2011
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.