Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

Request Permissions   Purchase Content 
 
 

 

Local indecomposability of Tate modules of non-CM abelian varieties with real multiplication


Author: Haruzo Hida
Journal: J. Amer. Math. Soc. 26 (2013), 853-877
MSC (2010): Primary 14G35, 11G15, 11G18, 11F80; Secondary 11G10, 14L05
DOI: https://doi.org/10.1090/S0894-0347-2013-00762-6
Published electronically: March 18, 2013
MathSciNet review: 3037789
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Indecomposability of $ p$-adic Tate modules over the $ p$-inertia group for non-CM (partially $ p$-ordinary) abelian varieties with real multiplication is proven under unramifiedness of $ p$ in the base field and in the multiplication field.


References [Enhancements On Off] (What's this?)

  • [ABV] David Mumford, Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, vol. 5, Published for the Tata Institute of Fundamental Research, Bombay, 2008. With appendices by C. P. Ramanujam and Yuri Manin; Corrected reprint of the second (1974) edition. MR 2514037 (2010e:14040)
  • [ACM] Goro Shimura, Abelian varieties with complex multiplication and modular functions, Princeton Mathematical Series, vol. 46, Princeton University Press, Princeton, NJ, 1998. MR 1492449 (99e:11076)
  • [ALR] Jean-Pierre Serre, Abelian $ l$-adic representations and elliptic curves, Research Notes in Mathematics, vol. 7, A K Peters Ltd., Wellesley, MA, 1998. With the collaboration of Willem Kuyk and John Labute; Revised reprint of the 1968 original. MR 1484415 (98g:11066)
  • [ARG] Arithmetic geometry, Springer-Verlag, New York, 1986. Papers from the conference held at the University of Connecticut, Storrs, Connecticut, July 30-August 10, 1984; Edited by Gary Cornell and Joseph H. Silverman. MR 861969 (89b:14029)
  • [BAL] N. Bourbaki, Algébre, Hermann, Paris, 1958.
  • [BDJ] Kevin Buzzard, Fred Diamond, and Frazer Jarvis, On Serre's conjecture for mod $ \ell $ Galois representations over totally real fields, Duke Math. J. 155 (2010), no. 1, 105-161. MR 2730374 (2012k:11067), https://doi.org/10.1215/00127094-2010-052
  • [BGK] G. Banaszak, W. Gajda, and P. Krasoń, On Galois representations for abelian varieties with complex and real multiplications, J. Number Theory 100 (2003), no. 1, 117-132. MR 1971250 (2004a:11042), https://doi.org/10.1016/S0022-314X(02)00121-X
  • [BL] Siegfried Bosch and Werner Lütkebohmert, Formal and rigid geometry. I. Rigid spaces, Math. Ann. 295 (1993), no. 2, 291-317. MR 1202394 (94a:11090), https://doi.org/10.1007/BF01444889
  • [C] Brian Conrad, Several approaches to non-Archimedean geometry, $ p$-adic geometry, Univ. Lecture Ser., vol. 45, Amer. Math. Soc., Providence, RI, 2008, pp. 9-63. MR 2482345 (2011a:14047)
  • [dJ] A. J. de Jong, Crystalline Dieudonné module theory via formal and rigid geometry, Inst. Hautes Études Sci. Publ. Math. 82 (1995), 5-96 (1996). MR 1383213 (97f:14047)
  • [dJ1] A. J. De Jong, Erratum to: ``Crystalline Dieudonné module theory via formal and rigid geometry'' Inst. Hautes Études Sci. Publ. Math. No. 87 (1998), 175.
  • [DLS] Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, vol. 80, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1978. MR 514561 (80k:53081)
  • [E] M. Emerton, A $ p$-adic variational Hodge conjecture and modular forms with complex multiplication, preprint
  • [EAI] H. Hida, Elliptic Curves and Arithmetic Invariants, Springer Monographs in Mathematics, to be published in 2013.
  • [EGA] A. Grothendieck and J. Dieudonné, Eléments de Géométrie Algébrique, Publications IHES 4 (1960), 8 (1961), 11 (1961), 17 (1963), 20 (1964), 24 (1965), 28 (1966), 32 (1967).
  • [GIT] David Mumford, Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge, Band 34, Springer-Verlag, Berlin, 1965. MR 0214602 (35 #5451)
  • [G] Eknath Ghate, Ordinary forms and their local Galois representations, Algebra and number theory, Hindustan Book Agency, Delhi, 2005, pp. 226-242. MR 2193355 (2006i:11056)
  • [GV] Eknath Ghate and Vinayak Vatsal, On the local behaviour of ordinary $ \Lambda $-adic representations, Ann. Inst. Fourier (Grenoble) 54 (2004), no. 7, 2143-2162 (2005) (English, with English and French summaries). MR 2139691 (2006b:11050)
  • [GV1] B. Balasubramanyam, E. Ghate and V. Vatsal, On local Galois representations attached to ordinary Hilbert modular forms, preprint 2012
  • [GME] Haruzo Hida, Geometric modular forms and elliptic curves, 2nd ed., World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012. MR 2894984 (2012j:11100)
  • [H06] Haruzo Hida, Automorphism groups of Shimura varieties, Doc. Math. 11 (2006), 25-56 (electronic). MR 2226268 (2007e:11067)
  • [H10] Haruzo Hida, The Iwasawa $ \mu $-invariant of $ p$-adic Hecke $ L$-functions, Ann. of Math. (2) 172 (2010), no. 1, 41-137. MR 2680417 (2012d:11215), https://doi.org/10.4007/annals.2010.172.41
  • [H11a] Haruzo Hida, Constancy of adjoint $ \mathcal {L}$-invariant, J. Number Theory 131 (2011), no. 7, 1331-1346. MR 2782844 (2012k:11071), https://doi.org/10.1016/j.jnt.2011.02.001
  • [H11b] Haruzo Hida, Irreducibility of the Igusa tower over unitary Shimura varieties, On certain $ L$-functions, Clay Math. Proc., vol. 13, Amer. Math. Soc., Providence, RI, 2011, pp. 187-203. MR 2767517 (2012c:11131)
  • [IAT] Goro Shimura, Introduction to the arithmetic theory of automorphic functions, Publications of the Mathematical Society of Japan, No. 11. Iwanami Shoten, Publishers, Tokyo, 1971. Kanô Memorial Lectures, No. 1. MR 0314766 (47 #3318)
  • [K] N. Katz, Serre-Tate local moduli, Algebraic surfaces (Orsay, 1976-78) Lecture Notes in Math., vol. 868, Springer, Berlin, 1981, pp. 138-202. MR 638600 (83k:14039b)
  • [K1] Nicholas M. Katz, $ p$-adic $ L$-functions for CM fields, Invent. Math. 49 (1978), no. 3, 199-297. MR 513095 (80h:10039), https://doi.org/10.1007/BF01390187
  • [M] Toshitsune Miyake, On automorphism groups of the fields of automorphic functions, Ann. of Math. (2) 95 (1972), 243-252. MR 0300977 (46 #137)
  • [N] Rutger Noot, Abelian varieties--Galois representation and properties of ordinary reduction, Compositio Math. 97 (1995), no. 1-2, 161-171. Special issue in honour of Frans Oort. MR 1355123 (97a:11093)
  • [NAA] S. Bosch, U. Güntzer, and R. Remmert, Non-Archimedean analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 261, Springer-Verlag, Berlin, 1984. A systematic approach to rigid analytic geometry. MR 746961 (86b:32031)
  • [O] A. Ogus, Hodge cycles and crystalline cohomology, in: Hodge Cycles, Motives, and Shimura Varieties, Chapter VI, Lecture Notes in Math. 900 (1982), 357-414.
  • [PAF] Haruzo Hida, $ p$-adic automorphic forms on Shimura varieties, Springer Monographs in Mathematics, Springer-Verlag, New York, 2004. MR 2055355 (2005e:11054)
  • [Ra] M. Rapoport, Compactifications de l'espace de modules de Hilbert-Blumenthal, Compositio Math. 36 (1978), no. 3, 255-335 (French). MR 515050 (80j:14009)
  • [Ri] Kenneth A. Ribet, Galois action on division points of Abelian varieties with real multiplications, Amer. J. Math. 98 (1976), no. 3, 751-804. MR 0457455 (56 #15660)
  • [Se] Jean-Pierre Serre, Quelques applications du théorème de densité de Chebotarev, Inst. Hautes Études Sci. Publ. Math. 54 (1981), 323-401 (French). MR 644559 (83k:12011)
  • [Sh] Goro Shimura, On canonical models of arithmetic quotients of bounded symmetric domains, Ann. of Math. (2) 91 (1970), 144-222. MR 0257031 (41 #1686)
  • [T] J. T. Tate, $ p-divisible$ $ groups$, Proc. Conf. Local Fields (Driebergen, 1966) Springer, Berlin, 1967, pp. 158-183. MR 0231827 (38 #155)
  • [Z] B. Zhao, Local indecomposability of Hilbert modular Galois representations, preprint, 2012 (posted in web: arXiv:1204.4007v1 [math.NT])

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2010): 14G35, 11G15, 11G18, 11F80, 11G10, 14L05

Retrieve articles in all journals with MSC (2010): 14G35, 11G15, 11G18, 11F80, 11G10, 14L05


Additional Information

Haruzo Hida
Affiliation: Department of Mathematics, University of California, Los Angeles, Los Angeles, California 90095-1555
Email: hida@math.ucla.edu

DOI: https://doi.org/10.1090/S0894-0347-2013-00762-6
Keywords: Abelian variety, Tate module, real/complex multiplication, Galois representation, deformation
Received by editor(s): April 1, 2012
Received by editor(s) in revised form: December 27, 2012
Published electronically: March 18, 2013
Additional Notes: The author is partially supported by NSF grants DMS 0753991 and DMS 0854949
Article copyright: © Copyright 2013 American Mathematical Society

American Mathematical Society