Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

Request Permissions   Purchase Content 
 
 

 

Entropy, determinants, and $ L^2$-torsion


Authors: Hanfeng Li and Andreas Thom
Journal: J. Amer. Math. Soc. 27 (2014), 239-292
MSC (2010): Primary 37B40, 37A35, 22D25, 58J52
DOI: https://doi.org/10.1090/S0894-0347-2013-00778-X
Published electronically: July 23, 2013
MathSciNet review: 3110799
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that for any amenable group $ \Gamma $ and any $ \mathbb{Z} \Gamma $-module $ \mathcal {M}$ of type FL with vanishing Euler characteristic, the entropy of the natural $ \Gamma $-action on the Pontryagin dual of $ {\mathcal {M}}$ is equal to the $ L^2$-torsion of $ \mathcal {M}$. As a particular case, the entropy of the principal algebraic action associated with the module $ \mathbb{Z} \Gamma /\mathbb{Z} \Gamma f$ is equal to the logarithm of the Fuglede-Kadison determinant of $ f$ whenever $ f$ is a non-zero-divisor in $ \mathbb{Z}\Gamma $. This confirms a conjecture of Deninger. As a key step in the proof we provide a general Szegő-type approximation theorem for the Fuglede-Kadison determinant on the group von Neumann algebra of an amenable group.

As a consequence of the equality between $ L^2$-torsion and entropy, we show that the $ L^2$-torsion of a nontrivial amenable group with finite classifying space vanishes. This was conjectured by Lück. Finally, we establish a Milnor-Turaev formula for the $ L^2$-torsion of a finite $ \Delta $-acyclic chain complex.


References [Enhancements On Off] (What's this?)

  • [1] Frank W. Anderson and Kent R. Fuller, Rings and categories of modules, 2nd ed., Graduate Texts in Mathematics, vol. 13, Springer-Verlag, New York, 1992. MR 1245487 (94i:16001)
  • [2] Mladen Bestvina and Noel Brady, Morse theory and finiteness properties of groups, Invent. Math. 129 (1997), no. 3, 445-470. MR 1465330 (98i:20039), https://doi.org/10.1007/s002220050168
  • [3] Patrick Billingsley, Convergence of probability measures, 2nd ed., Wiley Series in Probability and Statistics: Probability and Statistics, John Wiley & Sons Inc., New York, 1999. A Wiley-Interscience Publication. MR 1700749 (2000e:60008)
  • [4] Florin-Petre Boca, Rotation $ C^{*}$-algebras and almost Mathieu operators, Theta Series in Advanced Mathematics, vol. 1, The Theta Foundation, Bucharest, 2001. MR 1895184 (2003e:47063)
  • [5] Lewis Bowen, Measure conjugacy invariants for actions of countable sofic groups, J. Amer. Math. Soc. 23 (2010), no. 1, 217-245. MR 2552252 (2011b:37010), https://doi.org/10.1090/S0894-0347-09-00637-7
  • [6] Lewis Bowen, Entropy for expansive algebraic actions of residually finite groups, Ergodic Theory Dynam. Systems 31 (2011), no. 3, 703-718. MR 2794944 (2012j:37009), https://doi.org/10.1017/S0143385710000179
  • [7] Lewis Bowen and Hanfeng Li, Harmonic models and spanning forests of residually finite groups, J. Funct. Anal. 263 (2012), no. 7, 1769-1808. MR 2956925, https://doi.org/10.1016/j.jfa.2012.06.015
  • [8] Maxim Braverman, Alan Carey, Michael Farber, and Varghese Mathai, $ L^2$ torsion without the determinant class condition and extended $ L^2$ cohomology, Commun. Contemp. Math. 7 (2005), no. 4, 421-462. MR 2166660 (2006h:58039), https://doi.org/10.1142/S0219199705001866
  • [9] Kenneth S. Brown, Cohomology of groups, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York, 1994. Corrected reprint of the 1982 original. MR 1324339 (96a:20072)
  • [10] A. Carey, M. Farber, and V. Mathai, Determinant lines, von Neumann algebras and $ L^2$ torsion, J. Reine Angew. Math. 484 (1997), 153-181. MR 1437302 (98c:58175)
  • [11] Varghese Mathai and Alan L. Carey, $ L^2$-acyclicity and $ L^2$-torsion invariants, Geometric and topological invariants of elliptic operators (Brunswick, ME, 1988), Contemp. Math., vol. 105, Amer. Math. Soc., Providence, RI, 1990, pp. 91-118. MR 1047278 (91e:58187), https://doi.org/10.1090/conm/105/1047278
  • [12] Alan L. Carey and Varghese Mathai, $ L^2$-torsion invariants, J. Funct. Anal. 110 (1992), no. 2, 377-409. MR 1194991 (94a:58211), https://doi.org/10.1016/0022-1236(92)90036-I
  • [13] Tullio Ceccherini-Silberstein and Michel Coornaert, Cellular automata and groups, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010. MR 2683112 (2011j:37002)
  • [14] N.-P. Chung and H. Li. Homoclinic groups, IE groups, and expansive algebraic actions. Preprint, 2011.
  • [15] Alexandre I. Danilenko, Entropy theory from the orbital point of view, Monatsh. Math. 134 (2001), no. 2, 121-141. MR 1878075 (2002j:37011), https://doi.org/10.1007/s006050170003
  • [16] Marshall M. Cohen, A course in simple-homotopy theory, Springer-Verlag, New York, 1973. Graduate Texts in Mathematics, Vol. 10. MR 0362320 (50 #14762)
  • [17] Christopher Deninger, Deligne periods of mixed motives, $ K$-theory and the entropy of certain $ {\bf Z}^n$-actions, J. Amer. Math. Soc. 10 (1997), no. 2, 259-281. MR 1415320 (97k:11101), https://doi.org/10.1090/S0894-0347-97-00228-2
  • [18] Christopher Deninger, Fuglede-Kadison determinants and entropy for actions of discrete amenable groups, J. Amer. Math. Soc. 19 (2006), no. 3, 737-758 (electronic). MR 2220105 (2007b:37010), https://doi.org/10.1090/S0894-0347-06-00519-4
  • [19] Christopher Deninger, Mahler measures and Fuglede-Kadison determinants, Münster J. Math. 2 (2009), 45-63. MR 2545607 (2010h:37006)
  • [20] Christopher Deninger, Regulators, entropy and infinite determinants, Regulators, Contemp. Math., vol. 571, Amer. Math. Soc., Providence, RI, 2012, pp. 117-134. MR 2953411, https://doi.org/10.1090/conm/571/11324
  • [21] Christopher Deninger and Klaus Schmidt, Expansive algebraic actions of discrete residually finite amenable groups and their entropy, Ergodic Theory Dynam. Systems 27 (2007), no. 3, 769-786. MR 2322178 (2008d:37009), https://doi.org/10.1017/S0143385706000939
  • [22] Józef Dodziuk, Peter Linnell, Varghese Mathai, Thomas Schick, and Stuart Yates, Approximating $ L^2$-invariants and the Atiyah conjecture, Comm. Pure Appl. Math. 56 (2003), no. 7, 839-873. Dedicated to the memory of Jürgen K. Moser. MR 1990479 (2004g:58040), https://doi.org/10.1002/cpa.10076
  • [23] Jozef Dodziuk and Varghese Mathai, Approximating $ L^2$ invariants of amenable covering spaces: a combinatorial approach, J. Funct. Anal. 154 (1998), no. 2, 359-378. MR 1612713 (99e:58201), https://doi.org/10.1006/jfan.1997.3205
  • [24] Samuel Eilenberg and Tudor Ganea, On the Lusternik-Schnirelmann category of abstract groups, Ann. of Math. (2) 65 (1957), 517-518. MR 0085510 (19,52d)
  • [25] Gábor Elek, On the analytic zero divisor conjecture of Linnell, Bull. London Math. Soc. 35 (2003), no. 2, 236-238. MR 1952401 (2003m:20004), https://doi.org/10.1112/S002460930200173X
  • [26] Gábor Elek and Endre Szabó, Hyperlinearity, essentially free actions and $ L^2$-invariants. The sofic property, Math. Ann. 332 (2005), no. 2, 421-441. MR 2178069 (2007i:43002), https://doi.org/10.1007/s00208-005-0640-8
  • [27] Bent Fuglede and Richard V. Kadison, Determinant theory in finite factors, Ann. of Math. (2) 55 (1952), 520-530. MR 0052696 (14,660a)
  • [28] F. P. Gantmacher and M. G. Krein, Oscillation matrices and kernels and small vibrations of mechanical systems, Revised edition, AMS Chelsea Publishing, Providence, RI, 2002. Translation based on the 1941 Russian original; Edited and with a preface by Alex Eremenko. MR 1908601 (2003f:34161)
  • [29] Ross Geoghegan, Topological methods in group theory, Graduate Texts in Mathematics, vol. 243, Springer, New York, 2008. MR 2365352 (2008j:57002)
  • [30] Uffe Haagerup and Hanne Schultz, Brown measures of unbounded operators affiliated with a finite von Neumann algebra, Math. Scand. 100 (2007), no. 2, 209-263. MR 2339369 (2008m:46139)
  • [31] Henry Helson and David Lowdenslager, Prediction theory and Fourier series in several variables, Acta Math. 99 (1958), 165-202. MR 0097688 (20 #4155)
  • [32] Charles R. Johnson and Wayne W. Barrett, Spanning-tree extensions of the Hadamard-Fischer inequalities, Linear Algebra Appl. 66 (1985), 177-193. MR 781300 (87c:15039), https://doi.org/10.1016/0024-3795(85)90131-4
  • [33] Richard V. Kadison, Diagonalizing matrices, Amer. J. Math. 106 (1984), no. 6, 1451-1468. MR 765586 (86d:46056), https://doi.org/10.2307/2374400
  • [34] Richard V. Kadison and John R. Ringrose, Fundamentals of the theory of operator algebras. Vol. II, Advanced theory, Graduate Studies in Mathematics, vol. 16, American Mathematical Society, Providence, RI, 1997. Corrected reprint of the 1986 original. MR 1468230 (98f:46001b)
  • [35] Richard V. Kadison and John R. Ringrose, Fundamentals of the theory of operator algebras. Vol. I, Graduate Studies in Mathematics, vol. 15, American Mathematical Society, Providence, RI, 1997. Elementary theory; Reprint of the 1983 original. MR 1468229 (98f:46001a)
  • [36] David Kerr and Hanfeng Li, Entropy and the variational principle for actions of sofic groups, Invent. Math. 186 (2011), no. 3, 501-558. MR 2854085, https://doi.org/10.1007/s00222-011-0324-9
  • [37] A. K. Kelmans and B. N. Kimelfeld, Multiplicative submodularity of a matrix's principal minor as a function of the set of its rows, and some combinatorial applications, Discrete Math. 44 (1983), no. 1, 113-116. MR 687900 (84c:15028), https://doi.org/10.1016/0012-365X(83)90011-0
  • [38] P. H. Kropholler, C. Martinez-Pérez, and B. E. A. Nucinkis, Cohomological finiteness conditions for elementary amenable groups, J. Reine Angew. Math. 637 (2009), 49-62. MR 2599081 (2011e:20074), https://doi.org/10.1515/CRELLE.2009.090
  • [39] T. Y. Lam, Lectures on modules and rings, Graduate Texts in Mathematics, vol. 189, Springer-Verlag, New York, 1999. MR 1653294 (99i:16001)
  • [40] Serge Lang, Algebra, 3rd ed., Graduate Texts in Mathematics, vol. 211, Springer-Verlag, New York, 2002. MR 1878556 (2003e:00003)
  • [41] Hanfeng Li, Compact group automorphisms, addition formulas and Fuglede-Kadison determinants, Ann. of Math. (2) 176 (2012), no. 1, 303-347. MR 2925385, https://doi.org/10.4007/annals.2012.176.1.5
  • [42] Douglas Lind, Klaus Schmidt, and Evgeny Verbitskiy, Entropy and growth rate of periodic points of algebraic $ \mathbb{Z}^d$-actions, Dynamical numbers--interplay between dynamical systems and number theory, Contemp. Math., vol. 532, Amer. Math. Soc., Providence, RI, 2010, pp. 195-211. MR 2762141 (2012f:37012), https://doi.org/10.1090/conm/532/10491
  • [43] D. Lind, K. Schmidt, and E. Verbitskiy. Homoclinic points, atoral polynomials, and periodic points of algebraic $ \mathbb{Z}^d$-actions. Ergod. Th. Dynam. Sys. 33 (2013), no. 4, 1060-1081.
  • [44] Douglas Lind, Klaus Schmidt, and Tom Ward, Mahler measure and entropy for commuting automorphisms of compact groups, Invent. Math. 101 (1990), no. 3, 593-629. MR 1062797 (92j:22013), https://doi.org/10.1007/BF01231517
  • [45] Elon Lindenstrauss and Benjamin Weiss, Mean topological dimension, Israel J. Math. 115 (2000), 1-24. MR 1749670 (2000m:37018), https://doi.org/10.1007/BF02810577
  • [46] I. Ju. Linnik, A multidimensional analogue of G. Szegő's limit theorem, Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), no. 6, 1393-1403, 1439 (Russian). MR 0422974 (54 #10958)
  • [47] W. Lück, Approximating $ L^2$-invariants by their finite-dimensional analogues, Geom. Funct. Anal. 4 (1994), no. 4, 455-481. MR 1280122 (95g:58234), https://doi.org/10.1007/BF01896404
  • [48] Wolfgang Lück, $ L^2$-invariants of regular coverings of compact manifolds and CW-complexes, Handbook of geometric topology, North-Holland, Amsterdam, 2002, pp. 735-817. MR 1886681 (2003a:58049)
  • [49] Wolfgang Lück, $ L^2$-invariants: theory and applications to geometry and $ K$-theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 44, Springer-Verlag, Berlin, 2002. MR 1926649 (2003m:58033)
  • [50] Wolfgang Lück and Mikael Rørdam, Algebraic $ K$-theory of von Neumann algebras, $ K$-Theory 7 (1993), no. 6, 517-536. MR 1268591 (95b:46098), https://doi.org/10.1007/BF00961216
  • [51] Wolfgang Lück and Mel Rothenberg, Reidemeister torsion and the $ K$-theory of von Neumann algebras, $ K$-Theory 5 (1991), no. 3, 213-264. MR 1162441 (93g:57025), https://doi.org/10.1007/BF00533588
  • [52] Wolfgang Lück, Roman Sauer, and Christian Wegner, $ L^2$-torsion, the measure-theoretic determinant conjecture, and uniform measure equivalence, J. Topol. Anal. 2 (2010), no. 2, 145-171. MR 2652905 (2011m:57031), https://doi.org/10.1142/S179352531000032X
  • [53] Russell Lyons, Asymptotic enumeration of spanning trees, Combin. Probab. Comput. 14 (2005), no. 4, 491-522. MR 2160416 (2006j:05048), https://doi.org/10.1017/S096354830500684X
  • [54] Russell Lyons, Identities and inequalities for tree entropy, Combin. Probab. Comput. 19 (2010), no. 2, 303-313. MR 2593624 (2011e:60014), https://doi.org/10.1017/S0963548309990605
  • [55] J. Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 358-426. MR 0196736 (33 #4922)
  • [56] John W. Milnor, Infinite cyclic coverings, Conference on the Topology of Manifolds (Michigan State Univ., E. Lansing, Mich., 1967), Prindle, Weber & Schmidt, Boston, Mass., 1968, pp. 115-133. MR 0242163 (39 #3497)
  • [57] Jean Moulin Ollagnier, Ergodic theory and statistical mechanics, Lecture Notes in Mathematics, vol. 1115, Springer-Verlag, Berlin, 1985. MR 781932 (86h:28013)
  • [58] Donald S. Ornstein and Benjamin Weiss, Entropy and isomorphism theorems for actions of amenable groups, J. Analyse Math. 48 (1987), 1-141. MR 910005 (88j:28014), https://doi.org/10.1007/BF02790325
  • [59] M. Scott Osborne, Basic homological algebra, Graduate Texts in Mathematics, vol. 196, Springer-Verlag, New York, 2000. MR 1757274 (2001d:18013)
  • [60] Donald S. Passman, The algebraic structure of group rings, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York, 1977. MR 470211 (81d:16001)
  • [61] Justin Peters, Entropy on discrete abelian groups, Adv. in Math. 33 (1979), no. 1, 1-13. MR 540634 (80i:28037), https://doi.org/10.1016/S0001-8708(79)80007-9
  • [62] Jesse Peterson and Andreas Thom, Group cocycles and the ring of affiliated operators, Invent. Math. 185 (2011), no. 3, 561-592. MR 2827095 (2012j:22004), https://doi.org/10.1007/s00222-011-0310-2
  • [63] Jonathan Rosenberg, Algebraic $ K$-theory and its applications, Graduate Texts in Mathematics, vol. 147, Springer-Verlag, New York, 1994. MR 1282290 (95e:19001)
  • [64] Thomas Schick, $ L^2$-determinant class and approximation of $ L^2$-Betti numbers, Trans. Amer. Math. Soc. 353 (2001), no. 8, 3247-3265 (electronic). MR 1828605 (2002f:58056), https://doi.org/10.1090/S0002-9947-01-02699-X
  • [65] Klaus Schmidt, Dynamical systems of algebraic origin, Progress in Mathematics, vol. 128, Birkhäuser Verlag, Basel, 1995. MR 1345152 (97c:28041)
  • [66] Barry Simon, Orthogonal polynomials on the unit circle. Part 1, Classical theory, American Mathematical Society Colloquium Publications, vol. 54, American Mathematical Society, Providence, RI, 2005. MR 2105088 (2006a:42002a)
  • [67] Rita Solomyak, On coincidence of entropies for two classes of dynamical systems, Ergodic Theory Dynam. Systems 18 (1998), no. 3, 731-738. MR 1631756 (99h:58112), https://doi.org/10.1017/S0143385798108313
  • [68] G. Szegö, Ein Grenzwertsatz über die Toeplitzschen Determinanten einer reellen positiven Funktion, Math. Ann. 76 (1915), no. 4, 490-503 (German). MR 1511838, https://doi.org/10.1007/BF01458220
  • [69] M. Takesaki, Theory of operator algebras. I. Operator Algebras and Non-commutative Geometry, 5, Encyclopaedia of Mathematical Sciences, vol. 124, Springer-Verlag, Berlin, 2002. Reprint of the first (1979) edition. MR 1873025 (2002m:46083)
  • [70] V. G. Turaev, Reidemeister torsion in knot theory, Uspekhi Mat. Nauk 41 (1986), no. 1(247), 97-147, 240 (Russian). MR 832411 (87i:57009)
  • [71] Vladimir Turaev, Torsions of $ 3$-dimensional manifolds, Progress in Mathematics, vol. 208, Birkhäuser Verlag, Basel, 2002. MR 1958479 (2003m:57028)
  • [72] C. T. C. Wall, Finiteness conditions for $ {\rm CW}$-complexes, Ann. of Math. (2) 81 (1965), 56-69. MR 0171284 (30 #1515)
  • [73] C. T. C. Wall, Finiteness conditions for $ {\rm CW}$ complexes. II, Proc. Roy. Soc. Ser. A 295 (1966), 129-139. MR 0211402 (35 #2283)
  • [74] Peter Walters, An introduction to ergodic theory, Graduate Texts in Mathematics, vol. 79, Springer-Verlag, New York, 1982. MR 648108 (84e:28017)
  • [75] Christian Wegner, $ L^2$-invariants of finite aspherical CW-complexes, Manuscripta Math. 128 (2009), no. 4, 469-481. MR 2487437 (2010a:58028), https://doi.org/10.1007/s00229-008-0246-z
  • [76] S. A. Juzvinskiĭ, Calculation of the entropy of a group-endomorphism, Sibirsk. Mat. Z. 8 (1967), 230-239 (Russian). MR 0214726 (35 #5575)

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2010): 37B40, 37A35, 22D25, 58J52

Retrieve articles in all journals with MSC (2010): 37B40, 37A35, 22D25, 58J52


Additional Information

Hanfeng Li
Affiliation: Department of Mathematics, Chongqing University, Chongqing 401331, China — and — Department of Mathematics, SUNY at Buffalo, Buffalo, New York 14260-2900
Email: hfli@math.buffalo.edu

Andreas Thom
Affiliation: Mathematisches Institut, Universität Leipzig, PF 100920, 04009 Leipzig, Germany
Email: thom@math.uni-leipzig.de

DOI: https://doi.org/10.1090/S0894-0347-2013-00778-X
Keywords: Entropy, amenable group, Fuglede-Kadison determinant, $L^2$-torsion
Received by editor(s): June 1, 2012
Received by editor(s) in revised form: March 8, 2013
Published electronically: July 23, 2013
Additional Notes: The first author was partially supported by NSF Grants DMS-0701414 and DMS-1001625.
The second author was supported by the ERC Starting Grant 277728.
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society