Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

The circle method and bounds for $ L$-functions--III: $ t$-aspect subconvexity for $ GL(3)$ $ L$-functions


Author: Ritabrata Munshi
Journal: J. Amer. Math. Soc. 28 (2015), 913-938
MSC (2010): Primary 11F66, 11M41; Secondary 11F55
DOI: https://doi.org/10.1090/jams/843
Published electronically: July 13, 2015
MathSciNet review: 3369905
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \pi $ be a Hecke-Maass cusp form for $ SL(3,\mathbb{Z})$. In this paper we will prove the following subconvex bound:

$\displaystyle L\left (\tfrac {1}{2}+it,\pi \right )\ll _{\pi ,\varepsilon } (1+\vert t\vert)^{\frac {3}{4}-\frac {1}{16}+\varepsilon }. $


References [Enhancements On Off] (What's this?)

  • [1] Valentin Blomer, Subconvexity for twisted $ L$-functions on $ {\rm GL}(3)$, Amer. J. Math. 134 (2012), no. 5, 1385-1421. MR 2975240, https://doi.org/10.1353/ajm.2012.0032
  • [2] Dorian Goldfeld, Automorphic forms and $ L$-functions for the group $ {\rm GL}(n,\mathbf {R})$, Cambridge Studies in Advanced Mathematics, vol. 99, Cambridge University Press, Cambridge, 2006. With an appendix by Kevin A. Broughan. MR 2254662 (2008d:11046)
  • [3] Anton Good, The square mean of Dirichlet series associated with cusp forms, Mathematika 29 (1982), no. 2, 278-295 (1983). MR 696884 (84f:10036), https://doi.org/10.1112/S0025579300012377
  • [4] M. N. Huxley, On stationary phase integrals, Glasg. Math. J. 36 (1994), no. 3, 355-362. MR 1295511 (95g:11080), https://doi.org/10.1017/S0017089500030962
  • [5] Henryk Iwaniec and Emmanuel Kowalski, Analytic number theory, American Mathematical Society Colloquium Publications, vol. 53, American Mathematical Society, Providence, RI, 2004. MR 2061214 (2005h:11005)
  • [6] Hervé Jacquet and Joseph Shalika, Rankin-Selberg convolutions: Archimedean theory, Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Part I (Ramat Aviv, 1989) Israel Math. Conf. Proc., vol. 2, Weizmann, Jerusalem, 1990, pp. 125-207. MR 1159102 (93d:22022)
  • [7] Xiaoqing Li, Bounds for $ {\rm GL}(3)\times {\rm GL}(2)$ $ L$-functions and $ {\rm GL}(3)$ $ L$-functions, Ann. of Math. (2) 173 (2011), no. 1, 301-336. MR 2753605 (2012g:11092), https://doi.org/10.4007/annals.2011.173.1.8
  • [8] Stephen D. Miller and Wilfried Schmid, Automorphic distributions, $ L$-functions, and Voronoi summation for $ {\rm GL}(3)$, Ann. of Math. (2) 164 (2006), no. 2, 423-488. MR 2247965 (2007j:11065), https://doi.org/10.4007/annals.2006.164.423
  • [9] Ritabrata Munshi, Bounds for twisted symmetric square $ L$-functions, J. Reine Angew. Math. 682 (2013), 65-88. MR 3181499
  • [10] R. Munshi, Bounds for twisted symmetric square $ L$-functions--II. Unpublished.
  • [11] Ritabrata Munshi, Bounds for twisted symmetric square $ L$-functions--III, Adv. Math. 235 (2013), 74-91. MR 3010051, https://doi.org/10.1016/j.aim.2012.11.010
  • [12] Ritabrata Munshi, The circle method and bounds for $ L$-functions--I, Math. Ann. 358 (2014), no. 1-2, 389-401. MR 3158002, https://doi.org/10.1007/s00208-013-0968-4
  • [13] Ritabrata Munshi, The circle method and bounds for $ L$-functions--II: Subconvexity for twists of $ GL(3)$ $ L$-functions, Amer. J. Math. 137 (2015), no. 3, 791-812., https://doi.org/10.1353/ajm.2015.0018
  • [14] B. R. Srinivasan, The lattice point problem of many dimensional hyperboloids. III, Math. Ann. 160 (1965), 280-311. MR 0181614 (31 #5842)
  • [15] H. Weyl, Zur Abschätzung von $ \zeta (1+ti)$, Math. Z. 10 (1921), 88-101.

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2010): 11F66, 11M41, 11F55

Retrieve articles in all journals with MSC (2010): 11F66, 11M41, 11F55


Additional Information

Ritabrata Munshi
Affiliation: School of Mathematics, Tata Institute of Fundamental Research, 1 Dr. Homi Bhabha Road, Colaba, Mumbai 400005, India
Email: rmunshi@math.tifr.res.in

DOI: https://doi.org/10.1090/jams/843
Keywords: Subconvexity, $GL(3)$ Maass forms, twists
Received by editor(s): March 31, 2014
Published electronically: July 13, 2015
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society