Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)



Hypersurfaces that are not stably rational

Author: Burt Totaro
Journal: J. Amer. Math. Soc. 29 (2016), 883-891
MSC (2010): Primary 14E08; Secondary 14J45, 14J70
Published electronically: July 13, 2015
MathSciNet review: 3486175
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that a wide class of hypersurfaces in all dimensions are not stably rational. Namely, for all $ d\geq 2\lceil (n+2)/3\rceil $ and $ n\geq 3$, a very general complex hypersurface of degree $ d$ in $ {\bf P}^{n+1}$ is not stably rational. The statement generalizes Colliot-Thélène and Pirutka's theorem that very general quartic 3-folds are not stably rational. The result covers all the degrees in which Kollár proved that a very general hypersurface is non-rational, and a bit more. For example, very general quartic 4-folds are not stably rational, whereas it was not even known whether these varieties are rational.

References [Enhancements On Off] (What's this?)

  • [1] A. Beauville, A very general sextic double solid is not stably rational, available at arXiv:1411.7484.
  • [2] A. Beauville, A very general quartic double fourfold or fivefold is not stably rational. To appear in Algebr. Geom.
  • [3] N. Bourbaki, Éléments de mathématique. Algèbre commutative. Chapitres 8 et 9, Springer, Berlin, 2006 (French). Reprint of the 1983 original. MR 2284892 (2007h:13001)
  • [4] C. Herbert Clemens and Phillip A. Griffiths, The intermediate Jacobian of the cubic threefold, Ann. of Math. (2) 95 (1972), 281-356. MR 0302652 (46 #1796)
  • [5] Jean-Louis Colliot-Thélène and Daniel Coray, L'équivalence rationnelle sur les points fermés des surfaces rationnelles fibrées en coniques, Compos. Math. 39 (1979), no. 3, 301-332 (French). MR 550646 (81d:14008)
  • [6] J.-L. Colliot-Thélène and A. Pirutka, Hypersurfaces quartiques de dimension 3: non rationalité stable. To appear in Ann. Sci. Éc. Norm.Supér.
  • [7] Tommaso de Fernex and Davide Fusi, Rationality in families of threefolds, Rend. Circ. Mat. Palermo (2) 62 (2013), no. 1, 127-135. MR 3031573,
  • [8] William Fulton, Intersection theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998. MR 1644323 (99d:14003)
  • [9] Michel Gros, Classes de Chern et classes de cycles en cohomologie de Hodge-Witt logarithmique, Mém. Soc. Math. Fr. (N.S.) 21 (1985), 87 (French, with English summary). MR 844488 (87m:14021)
  • [10] Christopher D. Hacon and James Mckernan, On Shokurov's rational connectedness conjecture, Duke Math. J. 138 (2007), no. 1, 119-136. MR 2309156 (2008f:14030),
  • [11] V. A. Iskovskih and Ju. I. Manin, Three-dimensional quartics and counterexamples to the Lüroth problem, Mat. Sb. (N.S.) 86(128) (1971), 140-166 (Russian). MR 0291172 (45 #266)
  • [12] János Kollár, Nonrational hypersurfaces, J. Amer. Math. Soc. 8 (1995), no. 1, 241-249. MR 1273416 (95f:14025),
  • [13] János Kollár, Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 32, Springer-Verlag, Berlin, 1996. MR 1440180 (98c:14001)
  • [14] János Kollár, Nonrational covers of $ {\bf C}{\rm P}^m\times {\bf C}{\rm P}^n$, Explicit birational geometry of 3-folds, London Math. Soc. Lecture Note Ser., vol. 281, Cambridge Univ. Press, Cambridge, 2000, pp. 51-71. MR 1798980 (2001j:14016)
  • [15] János Kollár, Singularities of the minimal model program, Cambridge Tracts in Mathematics, vol. 200, Cambridge University Press, Cambridge, 2013. With a collaboration of Sándor Kovács. MR 3057950
  • [16] János Kollár, Karen E. Smith, and Alessio Corti, Rational and nearly rational varieties, Cambridge Studies in Advanced Mathematics, vol. 92, Cambridge University Press, Cambridge, 2004. MR 2062787 (2005i:14063)
  • [17] Alexander Merkurjev, Unramified elements in cycle modules, J. Lond. Math. Soc. (2) 78 (2008), no. 1, 51-64. MR 2427051 (2009i:14008),
  • [18] Shigefumi Mori, On a generalization of complete intersections, J. Math. Kyoto Univ. 15 (1975), no. 3, 619-646. MR 0393054 (52 #13865)
  • [19] Aleksandr Pukhlikov, Birationally rigid varieties, Mathematical Surveys and Monographs, vol. 190, American Mathematical Society, Providence, RI, 2013. MR 3060242
  • [20] Jean-Pierre Serre, Local fields, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York-Berlin, 1979. Translated from the French by Marvin Jay Greenberg. MR 554237 (82e:12016)
  • [21] B. Totaro, The motive of a classifying space, available at arXiv:1407.1366.
  • [22] Claire Voisin, Chow rings, decomposition of the diagonal, and the topology of families, Annals of Mathematics Studies, vol. 187, Princeton University Press, Princeton, NJ, 2014. MR 3186044
  • [23] Claire Voisin, Unirational varieties with no universal codimension 2 cycle, Invent. Math., 201 (2015), no. 1, 207-237. MR 3359052

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2010): 14E08, 14J45, 14J70

Retrieve articles in all journals with MSC (2010): 14E08, 14J45, 14J70

Additional Information

Burt Totaro
Affiliation: Mathematics Department, UCLA, Box 951555, Los Angeles, California 90095-1555

Received by editor(s): February 12, 2015
Received by editor(s) in revised form: February 26, 2015, and May 27, 2015
Published electronically: July 13, 2015
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society