Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

Lens rigidity for manifolds with hyperbolic trapped sets


Author: Colin Guillarmou
Journal: J. Amer. Math. Soc. 30 (2017), 561-599
MSC (2010): Primary 35R30; Secondary 53C24, 53C65
DOI: https://doi.org/10.1090/jams/865
Published electronically: September 6, 2016
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For a Riemannian manifold $ (M,g)$ with strictly convex boundary $ \partial M$, the lens data consist of the set of lengths of geodesics $ \gamma $ with end points on $ \partial M$, together with their end points $ (x_-,x_+)\in \partial M\times \partial M$ and tangent exit vectors $ (v_-,v_+)\in T_{x_-} M\times T_{x_+} M$. We show deformation lens rigidity for such manifolds with a hyperbolic trapped set and no conjugate points. This class contains all manifolds with negative curvature and strictly convex boundary, including those with non-trivial topology and trapped geodesics. For the same class of manifolds in dimension $ 2$, we prove that the set of end points and exit vectors of geodesics (i.e., the scattering data) determines the Riemann surface up to conformal diffeomorphism.


References [Enhancements On Off] (What's this?)

  • [AnRo] Yurii E. Anikonov and Vladimir G. Romanov, On uniqueness of determination of a form of first degree by its integrals along geodesics, J. Inverse Ill-Posed Probl. 5 (1997), no. 6, 487-490 (1998). MR 1623603, https://doi.org/10.1515/jiip.1997.5.6.487
  • [Be] Mikhail I. Belishev, The Calderon problem for two-dimensional manifolds by the BC-method, SIAM J. Math. Anal. 35 (2003), no. 1, 172-182 (electronic). MR 2001471, https://doi.org/10.1137/S0036141002413919
  • [BoRu] Rufus Bowen and David Ruelle, The ergodic theory of Axiom A flows, Invent. Math. 29 (1975), no. 3, 181-202. MR 0380889
  • [BuIv] Dmitri Burago and Sergei Ivanov, Boundary rigidity and filling volume minimality of metrics close to a flat one, Ann. of Math. (2) 171 (2010), no. 2, 1183-1211. MR 2630062, https://doi.org/10.4007/annals.2010.171.1183
  • [BuLi] Oliver Butterley and Carlangelo Liverani, Smooth Anosov flows: correlation spectra and stability, J. Mod. Dyn. 1 (2007), no. 2, 301-322. MR 2285731, https://doi.org/10.3934/jmd.2007.1.301
  • [Cr1] Christopher B. Croke, Rigidity for surfaces of nonpositive curvature, Comment. Math. Helv. 65 (1990), no. 1, 150-169. MR 1036134, https://doi.org/10.1007/BF02566599
  • [Cr2] Christopher B. Croke, Rigidity and the distance between boundary points, J. Differential Geom. 33 (1991), no. 2, 445-464. MR 1094465
  • [Cr3] Christopher Croke, Scattering rigidity with trapped geodesics, Ergodic Theory Dynam. Systems 34 (2014), no. 3, 826-836. MR 3199795, https://doi.org/10.1017/etds.2012.164
  • [CrHe] Christopher B. Croke and Pilar Herreros, Lens rigidity with trapped geodesics in two dimensions, Asian J. Math. 20 (2016), no. 1, 47-57. MR 3460758, https://doi.org/10.4310/AJM.2016.v20.n1.a3
  • [CrKl] Christopher B. Croke and Bruce Kleiner, Conjugacy and rigidity for manifolds with a parallel vector field, J. Differential Geom. 39 (1994), no. 3, 659-680. MR 1274134
  • [DaUh] Nurlan Dairbekov and Gunther Uhlmann, Reconstructing the metric and magnetic field from the scattering relation, Inverse Probl. Imaging 4 (2010), no. 3, 397-409. MR 2671103, https://doi.org/10.3934/ipi.2010.4.397
  • [DKSU] David Dos Santos Ferreira, Carlos E. Kenig, Mikko Salo, and Gunther Uhlmann, Limiting Carleman weights and anisotropic inverse problems, Invent. Math. 178 (2009), no. 1, 119-171. MR 2534094, https://doi.org/10.1007/s00222-009-0196-4
  • [DKLS] David Dos Santos Ferreira, Yaroslav Kurylev, Matti Lassas, and Mikko Salo, The Calderon problem in transversally anisotropic geometries, to appear in J. Eur. Math. Soc.
  • [DyGu1] Semyon Dyatlov and Colin Guillarmou, Microlocal limits of plane waves and Eisenstein functions, Ann. Sci. Éc. Norm. Supér. (4) 47 (2014), no. 2, 371-448 (English, with English and French summaries). MR 3215926
  • [DyGu2] Semyon Dyatlov, Colin Guillarmou, Pollicott-Ruelle resonances for open systems. Ann. Henri Poincaré, 1-18, DOI 10.1007/s00023-016-0491-8.
  • [DyZw] Semyon Dyatlov, Maciej Zworski, Dynamical zeta functions for Anosov flows via microlocal analysis, Ann. l'ENS 49 (2016), 543-577.
  • [FaSj] Frédéric Faure and Johannes Sjöstrand, Upper bound on the density of Ruelle resonances for Anosov flows, Comm. Math. Phys. 308 (2011), no. 2, 325-364 (English, with English and French summaries). MR 2851145, https://doi.org/10.1007/s00220-011-1349-z
  • [FrJo] Friedrich G. Friedlander and Mark S. Joshi, Introduction to the Theory of Distributions, Cambridge Univ. Press. (1999), pp. 188.
  • [GeGo] Patrick Gérard and François Golse, Averaging regularity results for PDEs under transversality assumptions, Comm. Pure Appl. Math. 45 (1992), no. 1, 1-26. MR 1135922, https://doi.org/10.1002/cpa.3160450102
  • [GrSj] Alain Grigis and Johannes Sjöstrand, Microlocal Analysis for Differential Operators, London Mathematical Society Lecture Note Series, vol. 196, Cambridge University Press, Cambridge, 1994. An introduction. MR 1269107
  • [Gu] Colin Guillarmou, Invariant distributions and X-ray transform for Anosov flows, J. Differential Geom., to appear. arXiv:1408.4732.
  • [GuKa1] Victor Guillemin and David Kazhdan, Some inverse spectral results for negatively curved $ 2$-manifolds, Topology 19 (1980), no. 3, 301-312. MR 579579, https://doi.org/10.1016/0040-9383(80)90015-4
  • [GuKa2] Victor Guillemin and David Kazhdan, Some inverse spectral results for negatively curved $ n$-manifolds, Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979) Proc. Sympos. Pure Math., XXXVI, Amer. Math. Soc., Providence, R.I., 1980, pp. 153-180. MR 573432
  • [HaKa] Anatole Katok and Boris Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and its Applications, vol. 54, Cambridge University Press, Cambridge, 1995. With a supplementary chapter by Katok and Leonardo Mendoza. MR 1326374
  • [HPPS] Morris Hirsch, Jacob Palis, Charles Pugh, and Michael Shub, Neighborhoods of hyperbolic sets, Invent. Math. 9 (1969/1970), 121-134. MR 0262627
  • [Hö] Lars Hörmander, The analysis of linear partial differential operators. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 256, Springer-Verlag, Berlin, 1983. Distribution theory and Fourier analysis. MR 717035
  • [KMPT] Tosio Kato, Marius Mitrea, Gustavo Ponce, and Michael Taylor, Extension and representation of divergence-free vector fields on bounded domains, Math. Res. Lett. 7 (2000), no. 5-6, 643-650. MR 1809290, https://doi.org/10.4310/MRL.2000.v7.n5.a10
  • [Kl] Wilhelm Klingenberg, Riemannian manifolds with geodesic flow of Anosov type, Ann. of Math. (2) 99 (1974), 1-13. MR 0377980
  • [Kl2] Wilhelm P. A. Klingenberg, Riemannian Geometry, 2nd ed., de Gruyter Studies in Mathematics, vol. 1, Walter de Gruyter & Co., Berlin, 1995. MR 1330918
  • [LSU] Matti Lassas, Vladimir Sharafutdinov, and Gunther Uhlmann, Semiglobal boundary rigidity for Riemannian metrics, Math. Ann. 325 (2003), no. 4, 767-793. MR 1974568, https://doi.org/10.1007/s00208-002-0407-4
  • [Mi] René Michel, Sur la rigidité imposée par la longueur des géodésiques, Invent. Math. 65 (1981/82), no. 1, 71-83 (French). MR 636880, https://doi.org/10.1007/BF01389295
  • [MuRo] Ravil G. Mukhometov and Vladimir G. Romanov, On the problem of finding an isotropic Riemannian metric in an $ n$-dimensional space, Dokl. Akad. Nauk SSSR 243 (1978), no. 1, 41-44 (Russian). MR 511273
  • [Mu] Ravil G. Mukhometov, On a problem of reconstructing Riemannian metrics, Sibirsk. Mat. Zh. 22 (1981), no. 3, 119-135, 237 (Russian). MR 621466
  • [NoSt] Lyle Noakes and Luchezar Stoyanov, Rigidity of scattering lengths and travelling times for disjoint unions of strictly convex bodies, Proc. Amer. Math. Soc. 143 (2015), no. 9, 3879-3893. MR 3359579, https://doi.org/10.1090/S0002-9939-2015-12531-2
  • [Pa] Gabriel P. Paternain, Geodesic Flows, Progress in Mathematics, vol. 180, Birkhäuser Boston, Inc., Boston, MA, 1999. MR 1712465
  • [PSU1] Gabriel P. Paternain, Mikko Salo, and Gunther Uhlmann, Tensor tomography on surfaces, Invent. Math. 193 (2013), no. 1, 229-247. MR 3069117, https://doi.org/10.1007/s00222-012-0432-1
  • [PSU2] Gabriel P. Paternain, Mikko Salo, and Gunther Uhlmann, Invariant distributions, Beurling transforms and tensor tomography in higher dimensions, Math. Ann. 363 (2015), no. 1-2, 305-362. MR 3394381, https://doi.org/10.1007/s00208-015-1169-0
  • [PeUh] Leonid Pestov and Gunther Uhlmann, Two dimensional compact simple Riemannian manifolds are boundary distance rigid, Ann. of Math. (2) 161 (2005), no. 2, 1093-1110. MR 2153407, https://doi.org/10.4007/annals.2005.161.1093
  • [PeSh] Leonid N. Pestov and Vladimir A. Sharafutdinov, Integral geometry of tensor fields on a manifold of negative curvature, Sibirsk. Mat. Zh. 29 (1988), no. 3, 114-130, 221 (Russian); English transl., Sib. Math. J. 29 (1988), no. 3, 427-441 (1989). MR 953028, https://doi.org/10.1007/BF00969652
  • [Ro] Clark Robinson, Structural stability on manifolds with boundary, J. Differential Equations 37 (1980), no. 1, 1-11. MR 583334, https://doi.org/10.1016/0022-0396(80)90083-2
  • [SaUh] Mikko Salo and Gunther Uhlmann, The attenuated ray transform on simple surfaces, J. Differential Geom. 88 (2011), no. 1, 161-187. MR 2819758
  • [Sh] Vladimir A. Sharafutdinov, Integral Geometry of Tensor Fields, Inverse and Ill-posed Problems Series, VSP, Utrecht, 1994. MR 1374572
  • [Sm] Stephen Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747-817. MR 0228014
  • [StUh1] Plamen Stefanov and Gunther Uhlmann, Boundary rigidity and stability for generic simple metrics, J. Amer. Math. Soc. 18 (2005), no. 4, 975-1003. MR 2163868, https://doi.org/10.1090/S0894-0347-05-00494-7
  • [StUh2] Plamen Stefanov and Gunther Uhlmann, Local lens rigidity with incomplete data for a class of non-simple Riemannian manifolds, J. Differential Geom. 82 (2009), no. 2, 383-409. MR 2520797
  • [SUV] Plamen Stefanov, Gunther Uhlmann, and Andras Vasy, Boundary rigidity with partial data, J. Amer. Math. Soc. 29 (2016), no. 2, 299-332. MR 3454376, https://doi.org/10.1090/jams/846
  • [Ot] Jean-Pierre Otal, Sur les longueurs des géodésiques d'une métrique à courbure négative dans le disque, Comment. Math. Helv. 65 (1990), no. 2, 334-347 (French). MR 1057248, https://doi.org/10.1007/BF02566611
  • [Sa] Luis A. Santaló, Integral Geometry and Geometric Probability, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976. With a foreword by Mark Kac; Encyclopedia of Mathematics and its Applications, Vol. 1. MR 0433364
  • [Su] Dennis Sullivan, Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups, Acta Math. 153 (1984), no. 3-4, 259-277. MR 766265, https://doi.org/10.1007/BF02392379
  • [Ta] Michael E. Taylor, Partial Differential Equations. I, Applied Mathematical Sciences, vol. 115, Springer-Verlag, New York, 1996. Basic theory. MR 1395148
  • [Ta2] Michael E. Taylor, Partial Differential Equations. III, Applied Mathematical Sciences, vol. 117, Springer-Verlag, New York, 1997. Nonlinear equations; Corrected reprint of the 1996 original. MR 1477408
  • [UhVa] Gunther Uhlmann and András Vasy, The inverse problem for the local geodesic ray transform, Invent. Math. 205 (2016), no. 1, 83-120. MR 3514959, https://doi.org/10.1007/s00222-015-0631-7
  • [Wa] Peter Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, vol. 79, Springer-Verlag, New York-Berlin, 1982. MR 648108
  • [Yo] Lai-Sang Young, Large deviations in dynamical systems, Trans. Amer. Math. Soc. 318 (1990), no. 2, 525-543. MR 975689, https://doi.org/10.2307/2001318
  • [Zw] Maciej Zworski, Semiclassical Analysis, Graduate Studies in Mathematics, vol. 138, American Mathematical Society, Providence, RI, 2012. MR 2952218

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2010): 35R30, 53C24, 53C65

Retrieve articles in all journals with MSC (2010): 35R30, 53C24, 53C65


Additional Information

Colin Guillarmou
Affiliation: DMA, U.M.R. 8553 CNRS, École Normale Superieure, 45 rue d’Ulm, 75230 Paris cedex 05, France
Email: cguillar@dma.ens.fr

DOI: https://doi.org/10.1090/jams/865
Keywords: X-ray transform, lens rigidity, scattering rigidity, hyperbolic dynamics
Received by editor(s): January 16, 2015
Received by editor(s) in revised form: July 12, 2016
Published electronically: September 6, 2016
Additional Notes: The research is partially supported by grants ANR-13-BS01-0007-01 and ANR-13-JS01-0006.
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society