Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 

 

Recent Mathematical Tables


Journal: Math. Comp. 1 (1944), 142-160
DOI: https://doi.org/10.1090/S0025-5718-44-99051-4
Full-text PDF Free Access

References | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] P. L. Chebyshev, ``Sur les fractions continues,'' Jn. d. Math., s. 2, v. 3, 1858, p. 289-323. Oeuvres, St. Petersburg, v. 1, 1899, p. 201-230.
  • [2] Chebyshev, ``Sur l'interpolation par la méthode des moindres carrés,'' Akad. Nauk, Leningrad, Mémoires, s. 7, v. 1, 1859, p. 1-24. Oeuvres, v. 1, p. 471-498.
  • [3] G. Szegö, Orthogonal Polynomials, Am. Math. So., Coll. Publ., v. 22, New York, 1939.
  • [4] F. Esscher, ``Ueber die Sterblichkeit in Schweden, 1866-1914,'' Lund, Observatoriet, Meddel., s. 2, v. 23, 1920, p. 10-21.
  • [5] Ch. Jordan, ``Sur une série de polynomes dont chaque somme partielle répresente la meilleure approximation d'un degré donné suivant la méthode des moindres carrés,'' London Math. So., Proc., s. 2, v. 20, 1920, p. 297-325.
  • [6] R. A. Fisher, ``Studies in Crop Variation.--I. An examination of the yield of dressed grain from Broadbalk,'' Jn. Agric. Sci., v. 11, 1921, p. 107-135.
  • [7] R. A. Fisher, Statistical Methods for Research Workers, Edinburgh, third ed., 1930.
  • [8] F. E. Allan, ``The general form of the orthogonal polynomials for simple series, with proofs of their simple properties,'' R. So. Edinburgh, Proc., v. 50, 1930, p. 310-320.
  • [9] Chebyshev, ``Sur l'interpolation,'' Akad. Nauk, Zapiski, v. 4, 1864. Oeuvres, v. 1, p. 539-560.
  • [10] A. C. Aitken, ``On the graduation of data by the orthogonal polynomials of least squares,'' R. So. Edinburgh, Proc., v. 53, 1933, p. 54-78.
  • [1] W. Hahn, ``Bericht über die Nullstellen der Laguerreschen und der Hermiteschen Polynome,'' Deutsche Mathem.-Ver., Jahresb., v. 44, 1934, p. 215-236. It is here pointed out, following Hermite, that the $ {H_n}(x)$ first occurred in 1836 in a paper of Sturm, and that in 1839 they are incidentally mentioned in a paper by Chebyshev.
  • [J] B. Russell (Jn. Math. Phys., M.I.T., v. 12, 1933, p. 291-297) has defined a Hermite function by the relation $ {\phi _n}(x) = {2^n}{e^{ - \tfrac{1}{2}{x^2}}}{H_n}(x)$ and given a table of $ {\phi _n}(x)$ for $ n = 0(1)11$, and $ x = [0.00(0.04)1.00(0.10)4.00(0.20)7.00,7.50,8.00;{\text{to at least 5S]}}$.
  • [1] M. Koppe, Die Ausbreitung einer Erschütterung an der Wellenmaschine durch einen neuen Grenzfall der Besseischen Functionen, Progr. Andreas Realgymn., Berlin, 1899; see also Forts. Math., v. 30, p. 420-421.
  • [2] W. Mc. F. Orr, ``Note on the radiation from an alternating circular electric current,'' Phil. Mag., s. 6, v. 7, 1904, p. 336-341.
  • [3] F. Pollaczek, ``Uber die Fortpflanzung mechanischer Vorgänge in einem linearen Gitter,'' Annalen d. Physik, s. 5, v. 2, 1929, p. 991-1011.
  • [4] T. H. Havelock, ``Studies in wave resistance: the effect of parallel middle body,'' R. So. London, Proc., v. 108 A, 1925, p. 77-92; ``Ship waves: their variation with certain systematic changes of form,'' R. So. London, Proc., v. 136 A, 1932, p. 465-471.
  • [5] G. N. Watson, Theory of Bessel Functions, Cambridge, Univ. Press, 1922, p. 752.
  • [6] S. P. Glazenap, Matematicheskie i Astronomicheskie Tablitsy, Leningrad, Acad. Sci., 1932, p. 97.
  • [7] P. Debye, ``Zerstreuung von Röntgenstrahlen,'' Annalen d. Physik, s. 4, v. 46, 1915, p. 809-823.
  • [8] F. A. Fischer, ``Über die akustische Strahlungsleistung von Strahlengruppen insbesondere der Kreis- und Kugelgruppen,'' Elek. Nach. Tech., v. 9, 1932, p. 147-155.
  • [9] M. Blackman, ``On the intensities of electron diffraction rings,'' R. So. London, Proc., v. 173A, 1939, p. 68-82.
  • [10] H. Buchholz, ``Die Wechselstromausbreitung im Erdreich unterhalb einer einseitig offenen und unendlich langen vertikalen Leiterschleife im Luftraum,'' Archiv f. Elektrotechnik, v. 30, 1936, p. 1-33.
  • [1] E. Lommel, ``Über eine mit den Bessel'schen Funktionen verwandte Funktion,'' Math. Ann., v. 9, 1876, p. 425-444.
  • [2] O. J. Lodge and A. Lodge, ``The rotation of the plane of polarization of light by the discharge of a Leyden jar,'' Phil. Mag., s. 5, v. 27, 1889, p. 339-346.
  • [3] M. Lerch [Speculations on some questions in integral equations] (Bohemian), Česká Akad., Rozpravy, Class II, v. 5, 1896, No. 23, 16 p.; Forts. Math., v. 27, 1896, p. 233-235.
  • [4] B. van der Pol, ``On the operational solution of linear differential equations and an investigation of the properties of these solutions,'' Phil. Mag., s. 7, v. 8, 1929, p. 861-898.
  • [5] P. Humbert, ``Sur les fonctions de Bessel-intégrales,'' Inst. d. France Acad. d. Sci., Comptes Rendus, v. 195, 1932, p. 854-855; ``Bessel-integral functions,'' Edin. Math. So., Proc., s. 2, v. 3, 1933, p. 276-285.
  • [6] A. H. A. Hogg, ``Equilibrium of a thin plate, symmetrically loaded, resting on an elastic foundation of infinite depth,'' Phil. Mag., s. 7, v. 25, 1938, p. 576-582.
  • [7] V. G. Smith, An asymptotic expansion of 𝐽𝑖₀(𝑥)=∫^{∞}ₓ(𝐽₀(𝑡)/𝑡)𝑑𝑡, J. Math. Phys. Mass. Inst. Tech. 22 (1943), 58–59. MR 0008705, https://doi.org/10.1002/sapm194322158
  • [1] N. E. Nörlund, Mémoire sur les polynomes de bernoulli, Acta Math. 43 (1922), no. 1, 121–196 (French). MR 1555176, https://doi.org/10.1007/BF02401755
  • [2] L. M. Milne-Thomson, The Calculus of Finite Differences, Macmillan and Co., Ltd., London, 1951. MR 0043339
  • [3] H. T. Davis, Tables of the Higher Mathematical Functions, Bloomington, Ind., The Principia Press, v. 2, 1935, p. 208-210.
  • [1] P. S. de Laplace, ``Mémoire sur l'intégration des équations différentielles par approximation,'' Mém. Acad. roy. sci., Paris, 1780, or Oeuvres, v. 9, p. 357-380, especially p. 359-362, 372-374.
  • [2] A Semi-Centennial History of the American Mathematical Society 1888-1938, New York, 1938, p. 119-120. Helge von Koch, ``Sur une application des déterminants infinis à la théorie des équations differentielles linéaires,'' Acta Math., v. 15, 1891, p. 53-63; ``Sur les déterminants infinis et les équations differentielles linéaires,'' Acta Math., v. 16, 1892-3, p. 217-295.
  • [3] Rayleigh, ``On maintained vibrations,'' Phil. Mag., s. 4, v. 15, 1883, p. 229-235, or Scientific Papers, v. 2, 1900, p. 188-193; ``On the maintenance of vibrations by forces of double frequency, and on the propagation of waves through a medium endowed with a periodic structure,'' Phil. Mag., s. 4, v. 24, 1887, p. 145-159, or Scientific Papers, v. 3, 1902, p. 1-14.
  • [4] G. Lamé, ``Méemoire sur les surfaces isothermes dans les corps solides homogènes en équilibre de température,'' Jn. de Math., s. 1, v. 2, 1837, p. 147-188; ``Mémoire sur l'équilibre des températures, dans les corps solides homogènes . . .,'' Jn. de Math., s. 1, v. 4, 1839, p. 126-163, 351-385.
  • [5] E. L. Mathieu, ``Mémoire sur le mouvement vibratoire d'une membrane de forme elliptique,'' Jn. de Math., s. 2, v. 13, 1868, p. 137-203; Cours de Physique Mathématique, Paris, 1873.
  • [6] C. Niven, ``On the conduction of heat in ellipsoids of revolution,'' R. So. London, Trans., v. 171, 1880, p. 117-151.
  • [7] Heine, Handbuch der Kugelfunktionen, second ed., Berlin, v. 2, 1881.
  • [8] M. Brillouin, Propagation de l'Électricité, Paris, Hermann, 1904, Ch. 6, p. 376, 383-4, etc.
  • [9] Egil A. Hylleraas, Équation d’ondes d’un électron dans le champ de forces de deux noyaux atomiques Problème de l’ion moléculaire d’hydrogène, Ann. Inst. H. Poincaré 7 (1937), no. 3, 121–153 (French). MR 1508038
  • [10] E. T. Whittaker, ``On the functions associated with the elliptic cylinder in harmonic analysis,'' Intern. Congress Math., Cambridge, 1912, v. 1, p. 366-371. ``On Lame's differential equation and ellipsoidal harmonics,'' London Math. So., Proc., s. 2, v. 14, 1915, p. 260-268 or Modern Analysis, p. 564; ``On an integral equation whose solutions are the functions of Lamé,'' R. So. Edinburgh, Proc., v. 35,1915, p. 70-77. See also J. H. Priestley, ``On some solutions of the wave equation,'' London Math. So., Proc., s. 2, v. 20, 1922, p. 37-50. J. L. Sharma, Jn. de Math., s. 9, v. 16, 1937, p. 199-203, 355-360.
  • [11] N. Nielsen, Théorie des Fonctions Metasphériques, Paris, 1911.
  • [12] R. C. Maclaurin, ``On the solutions of the equation $ ({\nabla ^2} + k)\psi = 0$ in elliptic coordinates and their physical applications,'' Cambridge Phil. So., Trans., v. 17, 1898, p. 41-108. For numerical results see p. 92-95, 98, 106, 108.
  • [13] L. Page and N. I. Adams, Jr., ``The electrical oscillations of a prolate spheroid, part I,'' Phys. Rev., s. 2, v. 53, 1938, p. 819-831.


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-44-99051-4
Article copyright: © Copyright 1944 American Mathematical Society