Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 

 

Recent Mathematical Tables


Journal: Math. Comp. 3 (1949), 462-484
DOI: https://doi.org/10.1090/S0025-5718-49-99505-8
Full-text PDF Free Access

References | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] D. H. Lehmer, Ramanujan’s function 𝜏(𝑛), Duke Math. J. 10 (1943), 483–492. MR 0008619
  • [1] R. C. J. Howland, ``On the stresses in the neighborhood of a circular hole in a strip under tension,'' R. Soc. London, Trans., v. 229A, 1930, p. 67; correction v. 232A, 1933, p. 169.
  • [2] The first four zeros were given, 4-5S, by F. Seewald, ``Die Spannung und Formänderungen von Balken mit rechtwinkligem Querschnitt,'' Aerodynam. Inst. Aachen, Abhand., Heft 7, 1927, p. 16. These values differ in some cases in the third figure from those obtained by the present author.
  • [1] G. Gourier, Acad. d. Sciences, Paris, Comptes Rendus, v. 97, 1883, p. 79-82.
  • [2] A. Berger, K. Vetenskaps Societen i Upsala, Nova Acta, s. 3, v. 16, no. 4, 1893 p. 3.
  • [3] Anders Reiz, On the numerical solution of certain types of integral equations, Ark. Mat. Astr. Fys. 29A (1943), no. 29, 21. MR 0011801
  • [4] E. R. Smith, Amer. Math. Mo., v. 43, 1936, p. 354.
  • [1] E. O. Powell, An integral related to the radiation integrals, Philos. Mag. (7) 34 (1943), 600–607. MR 0009152
  • [2] F. W. Newman, The Higher Trigonometry. Superrationals of Second Order. Cambridge, 1892.
  • [3] Alan Fletcher, Note on tables of an integral, Philos. Mag. (7) 35 (1944), 16–17. MR 0010650
  • [4] W. Spence, An essay on the Theory of the Various Orders of Logarithmic Transcendents, London, 1809, p. 24.
  • [5] E. E. Kummer, Jn. f. d. r. u. angew. Math., v. 21, 1840, p. 74-90, 193-225, 328-371.
  • [1] C. M. Sparrow, Table of Fresnel Integrals, Rouss Physical Laboratory, University of Virginia, 1934.
  • [2] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, England; The Macmillan Company, New York, 1944. MR 0010746
  • [1] Niels Nielsen, Theorie der Integrallogarithmus. Leipzig, 1906; the author gives an exhaustive bibliography.
  • [2] NBSMTC, Tables of Sine, Cosine, and Exponential Integrals. v. 1-2, New York, 1940; Table of Sine and Cosine Integrals for Arguments from 10 to 100. New York, 1942. The references contained in these volumes include a full bibliography of tables of these functions.
  • [3] C. J. Bouwkamp, ``Note on an integral occurring in antenna theory,'' Natuurkundig Laboratorium de N. V. Philips' Gloeilampenfabrieken, Eindhoven, Netherlands, Unpubl. ms.
  • [4] R. V. D. Campbell, ``Evaluation of the function $ S(b,h) = \int_0^h {\sin {{({x^2} + {b^2})}^{\tfrac{1}{2}}}dx/{{({x^2} + {b^2})}^{\tfrac{1}{2}}}} $'' June, 1944; [see MTAC, v. 2, p. 218].
  • [5] H. A. Arnold, R. V. D. Campbell, & R. R. Seeber, Jr., ``Evaluation of the function $ C(b,h) = \int_0^h {\cos {{({x^2} + {b^2})}^{\tfrac{1} {2}}}dx/{{({x^2} + {b^2})}^{\tfrac{1}{2}}}} $,'' Oct., 1944; [see MTAC, v. 2, p. 218].
  • [6] Curves of some of these functions appear in an article by Charles W. Harrison, Jr., ``A note on the mutual impedance of antennas,'' Jn. Appl. Physics, v. 14, June 1943, p. 306-309.
  • [7] R. W. P. King, Electromagnetic Engineering, New York, v. 1, 1945, p. 408, 426, 478f.
  • [8] C. T. Tai, Coupled antennas, Proc. I. R. E. 36 (1948), 487–500. MR 0024816
  • [9] Julius A. Stratton, Electromagnetic Theory. New York, 1941, p. 444, and R. W. P. King$ ^{7}$, p. 565.
  • [10] M. Abraham, ``Die elektrischen Schwingungen um einen stabförmigen Leiter, behandelt nach der Maxwell'schen Theorie,'' Annalen d. Physik, v. 302 or n.s., v. 66, 1898, p. 435-472.
  • [11] C. W. Oseen, ``Über die electromagnetischen Schwingungen an dünnen Stäben,'' Arkiv f. Mat. Astron. o. Fysik, v. 9, no. 30, 1914, 27 p.
  • [12] Erik Hallén, Iterated sine and cosine integrals, Trans. Roy. Inst. Tech. Stockholm 1947 (1947), no. 12, 6. MR 0026410
  • [13] L. V. King, ``Radiation field of a perfectly conducting base insulated cylindrical aerial over a perfectly conducting plane earth and the calculation of radiation resistance and reactance,'' R. Soc. London, Trans., v. 236A, 1937, p. 381-422.
  • [14] R. W. P. King & F. G. Blake, Jr., ``The self-impedance of a straight symmetrical antenna,'' Inst. Radio Engin., Proc., v. 30, 1942, p. 335-349.
  • [15] Ronold King and Charles W. Harrison Jr., The distribution of current along a symmetrical center-driven antenna, Proc. I. R. E. 31 (1943), 548–567. MR 0009903
  • [16] Marion C. Gray, A modification of Hallén’s solution of the antenna problem, J. Appl. Phys. 15 (1944), 61–65. MR 0012247
  • [17] Ronold King and David Middleton, The cylindrical antenna; current and impedance, Quart. Appl. Math. 3 (1946), 302–335. MR 0015323, https://doi.org/10.1090/S0033-569X-1946-15323-9
  • [1] B. R. Seth, ``On the flexure of a hollow shaft, I-II,'' Indian Acad. Sci., Proc., v. 4, 1936, p. 531-541; v. 5, 1937, p. 23-31.
  • [2] H. T. Davis, Tables of the Higher Math. Functions, v. 2, Bloomington, Ind., 1935; BAASMTC, Mathematical Tables, v. 1, second ed. 1946. See MTAC, v. 3, p. 424.
  • [1] G. Mie, ``Beiträge zur Optik trüber Medien,'' Annalen d. Physik, s. 4, v. 25, 1908, p. 377-445.


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-49-99505-8
Article copyright: © Copyright 1949 American Mathematical Society