Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 

 

Reviews and Descriptions of Tables and Books


Journal: Math. Comp. 11 (1957), 22-51
DOI: https://doi.org/10.1090/S0025-5718-57-99301-8
Corrigendum: Math. Comp. 11 (1957), 314.
Corrigendum: Math. Comp. 11 (1957), 228.
Full-text PDF Free Access

References | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] L. E. Simon & F. E. Grubbs, Tables of the Cumulative Binomial Probabilities, U. S. Gov. Printing Office, Washington, D. C., 1954.
  • [1] Herman Wold, Random Normal Deviates. 25,000 Items Compiled from Tract No. XXIV (M. G. Kendall and B. Babington Smith’s Tables of Random Sampling Numbers), Cambridge University Press, 1948. MR 0029132
  • [1] F. E. Grubbs & C. L. Weaver, ``The best unbiased estimate of population standard deviation based on group ranges,'' Amer. Stat. Assn. Jn., v. 42, 1947, p. 224-241.
  • [2] J. Edward Jackson and Eleanor L. Ross, Extended tables for use with the “𝐺” test for means, J. Amer. Statist. Assoc. 50 (1955), 416–433. MR 0069449
  • [1] R. v. Mises, ``Über die 'Ganzzahligkeit' der Atomgewichte und verwandte Fragen,'' Physikalische Zeitschrift, v. 19, 1918, p. 490-500.
  • [2] E. J. Gumbel, J. Arthur Greenwood, and David Durand, The circular normal distribution: theory and tables, J. Amer. Statist. Assoc. 48 (1953), 131–152. MR 0052726
  • [1] Catherine M. Thompson, Tables of percentage points of the incomplete beta-function, Biometrika 32 (1941), 151–181. Prefatory note by E. S. Pearson; description of the calculation by L. J. Comrie and H. O. Hartley; methods of interpolation by H. O. Hartley. MR 0005429, https://doi.org/10.2307/2332208
  • [2] The Kelley Statistical Tables, Cambridge, Mass., 1948. [MTAC, v. 1, 1944, RMT 130, p. 151-152.]
  • [1] W. L. Nicholson, A computing formula for the power of the analysis of variance test, Ann. Math. Statistics 25 (1954), 607–610. MR 0064367
  • [2] P. C. Tang, ``The power function of the analysis of variance test with tables and illustrations of their use,'' Stat. Res. Memoirs, v. 2, 1938, p. 126-149.
  • [1] Emma Lehmer, Inverse tables of probabilities of errors of the second kind, Ann. Math. Statistics 15 (1944), 388–398. MR 0011411
  • [2] P. C. Tang, ``The power function of the analysis of variance tests with tables and illustrations of their use,'' Stat. Res. Memoirs, v. 2, 1938, p. 126-194 + tables.
  • [1] A. M. Mood, The distribution theory of runs, Ann. Math. Statistics 11 (1940), 367–392. MR 0003493
  • [1] H. F. Dodge, ``Skip-lot sampling plan,'' Industrial Quality Control, v. XI, no. 5, 1955, p. 3-5. [MTAC, v. 10, 1956, RMT 19, p. 47.]
  • [1] Tables of the error function and of its first twenty derivatives, By the Staff of the Computation Laboratory. The Annals of the Computation Laboratory of Harvard University, vol. 23, Harvard University Press, Cambridge, Mass., 1952. MR 0044891
  • [1] NBS Applied Mathematics Series, No. 17, Tables of Coulomb Wave Functions, v. 1, U. S. Gov. Printing Office, Washington, D. C., 1952.
  • [2] A. Erdélyi, M. Kennedy, & J. L. McGregor, ``Asymptotic forms of Coulomb wave functions I,'' California Institute of Technology: Tech. Report No. 4 NRO43-121, 1955.
  • [3] A. Erdélyi, M. Kennedy, and J. L. McGregor, Asymptotic forms of Coulomb wave functions. I, Tech. Rep. 4, Department of Mathematics, California Institute of Technology, Pasadena, 1955. With an appendix by C. A. Swanson. MR 0077723
  • [4] Nicholas D. Kazarinoff, Asymptotic expansions for the Whittaker functions of large complex order 𝑚, Trans. Amer. Math. Soc. 78 (1955), 305–328. MR 0067248, https://doi.org/10.1090/S0002-9947-1955-0067248-7
  • [5] F. W. J. Olver, The asymptotic solution of linear differential equations of the second order for large values of a parameter, Philos. Trans. Roy. Soc. London. Ser. A. 247 (1954), 307–327. MR 0067249, https://doi.org/10.1098/rsta.1954.0020
  • [6] F. W. J. Olver, The asymptotic solution of linear differential equations of the second order in a domain containing one transition point, Philos. Trans. Roy. Soc. London. Ser. A. 249 (1956), 65–97. MR 0079157, https://doi.org/10.1098/rsta.1956.0015
  • [1] D. C. Hodgkin, J. Pickworth, J. H. Robertson, J. G. White, K. N. Trueblood, & R. Prosen, ``The crystal structure of the hexacarboxylic acid derived from $ \operatorname{B}_{12}$ and the molecular structure of the vitamin,'' Nature, v. 176, 1955, p. 325-328.
  • [1] I. J. Good, The serial test for sampling numbers and other tests for randomness, Proc. Cambridge Philos. Soc. 49 (1953), 276–284. MR 0060786
  • [1] A. Weinberger & J. L. Smith, ``A One-Microsecond Adder Using One-Megacycle Circuitry,'' IRE Trans, on Electronic Computers, v. EC-5, 1956, p. 65-73. This article also appears under the title, ``The Logical Design of a $ 1$-Microsecond Parallel Adder using $ 1$-Megacycle Circuitry,'' in Western Joint Computer Conference, Proc., Feb. 7-9, 1956, San Francisco, California, sponsored by The Am. Inst. of Elec. Engineers, The Assn. for Computing Machinery, and the Inst. of Radio Engineers. Pub. by Am. Inst. of Elec. Engineers, New York, 1956, p. 103-108.


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-57-99301-8
Article copyright: © Copyright 1957 American Mathematical Society