Solution of Poisson's equation by relaxation method--normal gradient specified on curved boundaries
Author:
R. V. Viswanathan
Journal:
Math. Comp. 11 (1957), 67-78
MSC:
Primary 65.3X
DOI:
https://doi.org/10.1090/S0025-5718-1957-0086396-4
MathSciNet review:
0086396
Full-text PDF
References | Similar Articles | Additional Information
- [1] R. V. Southwell, Relaxation Methods in Theoretical Physics, Oxford, at the Clarendon Press, 1946. MR 0018983 (8:355f)
- [2] L. Fox, ``Numerical solution of elliptic differential equations when the boundary conditions involve a derivative,'' Roy. Soc., Phil. Trans., London, v. 242, 1950, p. 345-378. MR 0035525 (11:744f)
- [3] D. N. de G. Allen, Relaxation Methods, McGraw Hill Book Co., Inc., New York, 1954. MR 0061468 (15:831b)
- [4] F. Castle, Five-Figure Logarithmic and Other Tables, Macmillan and Co., London, 1910.
Retrieve articles in Mathematics of Computation with MSC: 65.3X
Retrieve articles in all journals with MSC: 65.3X
Additional Information
DOI:
https://doi.org/10.1090/S0025-5718-1957-0086396-4
Article copyright:
© Copyright 1957
American Mathematical Society