Table of a Weierstrass continuous non-differentiable function

Authors:
Herbert E. Salzer and Norman Levine

Journal:
Math. Comp. **15** (1961), 120-130

MSC:
Primary 65.00

DOI:
https://doi.org/10.1090/S0025-5718-1961-0122011-X

Corrigendum:
Math. Comp. **15** (1961), 436-436.

MathSciNet review:
0122011

Full-text PDF

References | Similar Articles | Additional Information

**[1]**A. N. Singh,*The Theory and Construction of Non-Differentiable Functions*, Lucknow University Studies, Faculty of Science, no. 1, 1935, reprinted in*Squaring the Circle and Other Monographs*, Chelsea Publishing Co., New York, 1953.**[2]**E. Goursat,*A Course in Mathematical Analysis*, Vol. 1, translated by E. R. Hedrick, Ginn & Co., Boston, 1904, p. 423-425.**[3]**T. Bromwich,*An Introduction to the Theory of Infinite Series*, Macmillan & Co., Ltd., London, 1908, p. 490-491.*Note*: The proof of the sufficiency of is not contained in the later 1926 edition.**[4]**G. H. Hardy, ``Weierstrass's non-differentiable function,''*Trans. Amer. Math. Soc.*, v. 17, 1916, p. 301-325. MR**1501044****[5]**Nat. Bur. Standards Appl. Math. Ser. No. 5,*Table of Sines and Cosines to Fifteen Decimal Places at Hundredths of a Degree*, U. S. Government Printing Office, Washington 25, D. C., 1949. MR**0030289 (10:740d)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65.00

Retrieve articles in all journals with MSC: 65.00

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1961-0122011-X

Article copyright:
© Copyright 1961
American Mathematical Society