Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

An improved eigenvalue corrector formula for solving the Schrödinger equation for central fields


Author: J. W. Cooley
Journal: Math. Comp. 15 (1961), 363-374
MSC: Primary 65.66
DOI: https://doi.org/10.1090/S0025-5718-1961-0129566-X
MathSciNet review: 0129566
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] D. R. Hartree, The Calculation of Atomic Structure, John Wiley and Sons, New York 1957, p. 86. MR 0090408 (19:811a)
  • [2] E. C. Ridley, ``The self-consistent field for $ M{o^ + }$,'' Proc. Cambridge Philos. Soc. v. 51, 1955, p. 702.
  • [3] R. A. Rubenstein, M. Huse, & S. Machlup, ``Numerical solution of the Schroedinger equation for central fields,'' MTAC, v. 10, 1956, p. 30. MR 0076458 (17:902b)
  • [4] S. Skillman, ``Efficient method for solving atomic Schrödinger's equation,'' MTAC, v. 13, 1959, p. 299. MR 0108291 (21:7007)
  • [5] R. de L. Kronig & I. I. Rabi, ``The symmetrical top in the undulatory mechanics,'' Phys. Rev., v. 29, 1927, p. 262.
  • [6] B. Numerov, Publs. observatoire central astrophys. Russ., v. 2, 1933, p. 188.
  • [7] P. O. Löwdin, An Elementary Iteration-Variation Procedure for Solving the Schroedinger Equation, Technical Note No. 11, Quantum Chemistry Group, Uppsala University, Uppsala, Sweden, 1958.
  • [8] P. M. Morse, ``Diatomic molecules according to the wave mechanics II. Vibrational levels,'' Phys. Rev., v. 34, 1929, p. 57.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65.66

Retrieve articles in all journals with MSC: 65.66


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1961-0129566-X
Article copyright: © Copyright 1961 American Mathematical Society

American Mathematical Society