Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 

 

Some relations and values for the generalized Riemann zeta functions.


Authors: Eldon R. Hansen and Merrell L. Patrick
Journal: Math. Comp. 16 (1962), 265-274
MSC: Primary 10.41
DOI: https://doi.org/10.1090/S0025-5718-1962-0147462-X
Corrigendum: Math. Comp. 17 (1963), 104-104.
Corrigendum: Math. Comp. 17 (1963), 104-104.
MathSciNet review: 0147462
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] E. T. Whittaker & G. N. Watson, A Course in Modern Analysis, fourth edition, Cambridge, 1952.
  • [2] J. P. Gram, ``Tafeln für die Riemannsche Zetafunktion,'' Kungl. Danske Vid. Selsk. Skr. (8), v. 10, 1925, p. 313-325.
  • [3] C. B. Haselgrove and J. C. P. Miller, Tables of the Riemann zeta function, Royal Society Mathematical Tables, Vol. 6, Cambridge University Press, New York, 1960. MR 0117905
  • [4] R. Hensman, Tables of the Generalized Riemann Zeta Function, Report No. T 2111, Telecommunications Research Establishment, Ministry of Supply, Great Malvern, Worcestershire, 1948.
  • [5] British Association for the Advancement of Science, Mathematical Tables, Vol. I, Circular and Hyperbolic Functions, third edition, Cambridge University Press, 1951.
  • [6] E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, second edition, Oxford University Press, 1948.
  • [7] E. O. Powell, A table of the generalized Riemann zeta function in a particular case, Quart. J. Mech. Appl. Math. 5 (1952), 116–123. MR 0046740, https://doi.org/10.1093/qjmam/5.1.116
  • [8] K. Mitchell, Tables of the function ∫^{𝑧}₀(-𝑙𝑜𝑔|1-𝑦|/𝑦)𝑑𝑦 with an account of some properties of this and related functions, Philos. Mag. (7) 40 (1949), 351–368. MR 0030294
  • [9] E. Lerch, ``Note sur la fonction $ R(w,x,s) = \sum\limits_0^\infty {\tfrac{{{e^{2k\pi ix}}}} {{{{(w + k)}^s}}}} $,'' Acta. Math. (Stockholm), v. 11, 1887, p. 19-24.
  • [10] H. Bremmer, Terrestrial Radio Waves. Theory of Propagation, Elsevier Publishing Company, Inc., New York, N. Y., Amsterdam, London, Brussels, 1949. MR 0032462
  • [11] Nelson Logan, General Research in Diffraction Theory, v. I., Lockheed Missiles and Space Division Report #288087, December 1959.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 10.41

Retrieve articles in all journals with MSC: 10.41


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1962-0147462-X
Article copyright: © Copyright 1962 American Mathematical Society