Fourth-order finite difference analogues of the Dirichlet problem for Poisson's equation in three and four dimensions

Author:
James H. Bramble

Journal:
Math. Comp. **17** (1963), 217-222

MSC:
Primary 65.66

DOI:
https://doi.org/10.1090/S0025-5718-1963-0160338-8

Corrigendum:
Math. Comp. **17** (1963), 487-488.

MathSciNet review:
0160338

Full-text PDF

References | Similar Articles | Additional Information

**[1]**J. H. Bramble and B. E. Hubbard,*On the formulation of finite difference analogues of the Dirichlet problem for Poisson’s equation*, Numer. Math.**4**(1962), 313–327. MR**0149672**, https://doi.org/10.1007/BF01386325**[2]**J. H. Bramble and B. E. Hubbard,*A theorem on error estimation for finite difference analogues of the Dirichlet problem for elliptic equations*, Contributions to Differential Equations**2**(1963), 319–340. MR**0152134****[3]**George E. Forsythe and Wolfgang R. Wasow,*Finite-difference methods for partial differential equations*, Applied Mathematics Series, John Wiley & Sons, Inc., New York-London, 1960. MR**0130124****[4]**G. Shortley & R. Weller, ``The numerical solution of Laplace's equation,''*J. Appl. Phys.*, v. 9, 1938, p. 334-348.

Retrieve articles in *Mathematics of Computation*
with MSC:
65.66

Retrieve articles in all journals with MSC: 65.66

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1963-0160338-8

Article copyright:
© Copyright 1963
American Mathematical Society