Some fifth degree integration formulas for symmetric regions

Author:
A. H. Stroud

Journal:
Math. Comp. **20** (1966), 90-97

MSC:
Primary 65.55

DOI:
https://doi.org/10.1090/S0025-5718-1966-0191094-8

MathSciNet review:
0191094

Full-text PDF

References | Similar Articles | Additional Information

**[1]**V. A. Ditkin,*On certain approximate formulas for the calculation of triple integrals*, Doklady Akad. Nauk SSSR (N.S.)**62**(1948), 445–447 (Russian). MR**0027603****[2]**F. R. Gantmaher,*Teoriya matric*, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow, 1953 (Russian). MR**0065520****[3]**Preston C. Hammer and Arthur H. Stroud,*Numerical evaluation of multiple integrals. II*, Math. Tables Aids Comput.**12**(1958), 272–280. MR**0102176**, https://doi.org/10.1090/S0025-5718-1958-0102176-6**[4]**R. G. Hetherington, "Numerical integration over hypershells," Thesis, University of Wisconsin, Madison, Wis., 1961.**[5]**I. P. Mysovskih,*Cubature formulas for evaluating integrals over a sphere*, Dokl. Akad. Nauk SSSR**147**(1962), 552–555 (Russian). MR**0146961****[6]**William H. Peirce,*Numerical integration over the planar annulus*, J. Soc. Indust. Appl. Math.**5**(1957), 66–73. MR**0090122****[7]**William H. Peirce,*Numerical integration over the spherical shell*, Math. Tables Aids Comput**11**(1957), 244–249. MR**0093910**, https://doi.org/10.1090/S0025-5718-1957-0093910-1**[8]**A. H. Stroud and Don Secrest,*Gaussian quadrature formulas*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1966. MR**0202312**

Retrieve articles in *Mathematics of Computation*
with MSC:
65.55

Retrieve articles in all journals with MSC: 65.55

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1966-0191094-8

Article copyright:
© Copyright 1966
American Mathematical Society