Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 

 

A note on an expansion of hypergeometric functions of two variables


Author: Arun Verma
Journal: Math. Comp. 20 (1966), 413-417
Full-text PDF Free Access

References | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] R. P. Agarwal, An extension of Meijer’s 𝐺-function, Proc. Nat. Inst. Sci. India Part A 31 (1965), 536–546 (1966). MR 0204717
  • [2] W. N. Bailey, "Some expansions in Bessel functions involving Appell functions $ {F_4}$," Quart. J. Math. Oxford Ser., v. 6, 1935, pp. 233-238.
  • [3] T. W. Chaundy, Expansions of hypergeometric functions, Quart. J. Math., Oxford Ser. 13 (1942), 159–171. MR 0007819
  • [4] W. A. Al-Salam and L. Carlitz, Some functions associated with the Bessel functions, J. Math. Mech. 12 (1963), 911–933. MR 0155020
  • [5] C. Fox, "The expansion of hypergeometric function in terms of similar series," Proc. London Math. Soc., v. 26, 1927, pp. 201-210.
  • [6] Jerry L. Fields and Jet Wimp, Expansions of hypergeometric functions in hypergeometric functions., Math. Comp. 15 (1961), 390–395. MR 0125992, 10.1090/S0025-5718-1961-0125992-3
  • [7] C. S. Meijer, Expansion theorems for the 𝐺-function. I, Nederl. Akad. Wetensch. Proc. Ser. A. 55 = Indagationes Math. 14 (1952), 369–379. MR 0051373
  • [8] S. O. Rice, "On contour integrals for the product of Bessel functions," Quart. J. Math. Oxford Ser., v. 6, 1935, pp. 52-64.
  • [9] H. M. Srivastava, Some expansions in products of hypergeometric functions, Proc. Cambridge Philos. Soc. 62 (1966), 245–247. MR 0188501
  • [10] A. Verma, "A class of expansions of $ G$-functions and the Laplace transform," Math. Comp., v. 19, 1965, pp. 661-664.
  • [11] A. Verma, "Certain expansions involving generalised basic hypergeometric series," Math. Comp., v. 20, 1966, pp. 151-157.
  • [12] A. Verma, "Expansions of hypergeometric functions of two variables," Collect. Math. (To appear.)
  • [13] Jet Wimp and Yudell L. Luke, Expansion formulas for generalized hypergeometric functions, Rend. Circ. Mat. Palermo (2) 11 (1962), 351–366. MR 0166405


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-66-99930-3
Article copyright: © Copyright 1966 American Mathematical Society