A note on an expansion of hypergeometric functions of two variables

Author:
Arun Verma

Journal:
Math. Comp. **20** (1966), 413-417

DOI:
https://doi.org/10.1090/S0025-5718-66-99930-3

Full-text PDF Free Access

References | Additional Information

**[1]**R. P. Agarwal,*An extension of Meijer’s 𝐺-function*, Proc. Nat. Inst. Sci. India Part A**31**(1965), 536–546 (1966). MR**0204717****[2]**W. N. Bailey, "Some expansions in Bessel functions involving Appell functions ,"*Quart. J. Math. Oxford Ser.*, v. 6, 1935, pp. 233-238.**[3]**T. W. Chaundy,*Expansions of hypergeometric functions*, Quart. J. Math., Oxford Ser.**13**(1942), 159–171. MR**0007819****[4]**W. A. Al-Salam and L. Carlitz,*Some functions associated with the Bessel functions*, J. Math. Mech.**12**(1963), 911–933. MR**0155020****[5]**C. Fox, "The expansion of hypergeometric function in terms of similar series,"*Proc. London Math. Soc.*, v. 26, 1927, pp. 201-210.**[6]**Jerry L. Fields and Jet Wimp,*Expansions of hypergeometric functions in hypergeometric functions.*, Math. Comp.**15**(1961), 390–395. MR**0125992**, https://doi.org/10.1090/S0025-5718-1961-0125992-3**[7]**C. S. Meijer,*Expansion theorems for the 𝐺-function. I*, Nederl. Akad. Wetensch. Proc. Ser. A. 55 = Indagationes Math.**14**(1952), 369–379. MR**0051373****[8]**S. O. Rice, "On contour integrals for the product of Bessel functions,"*Quart. J. Math. Oxford Ser.*, v. 6, 1935, pp. 52-64.**[9]**H. M. Srivastava,*Some expansions in products of hypergeometric functions*, Proc. Cambridge Philos. Soc.**62**(1966), 245–247. MR**0188501****[10]**A. Verma, "A class of expansions of -functions and the Laplace transform,"*Math. Comp.*, v. 19, 1965, pp. 661-664.**[11]**A. Verma, "Certain expansions involving generalised basic hypergeometric series,"*Math. Comp.*, v. 20, 1966, pp. 151-157.**[12]**A. Verma, "Expansions of hypergeometric functions of two variables,"*Collect. Math.*(To appear.)**[13]**Jet Wimp and Yudell L. Luke,*Expansion formulas for generalized hypergeometric functions*, Rend. Circ. Mat. Palermo (2)**11**(1962), 351–366. MR**0166405**, https://doi.org/10.1007/BF02843879

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-66-99930-3

Article copyright:
© Copyright 1966
American Mathematical Society