Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Some factorizations of $ 2^n \pm 1$ and related results


Authors: John Brillhart and J. L. Selfridge
Journal: Math. Comp. 21 (1967), 87-96
DOI: https://doi.org/10.1090/S0025-5718-67-99898-5
Corrigendum: Math. Comp. 21 (1967), 751.
MathSciNet review: 0224532
Full-text PDF Free Access

References | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] J. Brillhart, "Some miscellaneous factorizations," Math. Comp., v. 17, 1963, pp. 447- 450.
  • [2] J. Brillhart, "Concerning the numbers $ {2^{2p}} + 1$, $ p$ prime," Math. Comp., v. 16, 1962, pp. 424-430. MR 26 #6100. MR 0148593 (26:6100)
  • [3] A. J. C. Cunningham & H. J. Woodall, Factorizations of $ ({y^n} \mp 1)$, Hodgson, London, 1925.
  • [4] E. Gabard, "Factorisation d'un nouveau nombre de Mersenne," Mathesis, 1959, p. 61.
  • [5] D. Jarden, Recurring Sequences, Riveon Lematematika, v. 12, 1958, pp. 18-39. (Hebrew) MR 0104618 (21:3371)
  • [6] M. Kraitchik, Recherches sur la Théorie des Nombres, Tome II, Paris, 1929.
  • [7] D. H. Lehmer, "The mechanical combination of linear forms," Amer. Math. Monthly, v. 35, 1928, pp. 114-121. MR 1521394
  • [8] D. H. Lehmer, "A photo electric number sieve," Amer. Math. Monthly, v. 40, 1933, pp. 401-406. MR 1522863
  • [9] D. H. Lehmer, "A machine for combining sets of linear congruences," Math. Ann., v. 109, 1934, pp. 661-667. MR 1512915
  • [10] D. H. Lehmer, "On the factorization of Lucas' functions," Tôhoku Math. J., v. 34, 1931, pp. 1-7.
  • [11] D. H. Lehmer, "Tests for primality by the converse of Fermat's theorem," Bull. Amer. Math. Soc., v. 33, 1927, pp. 327-340.
  • [12] D. H. Lehmer, "An extended theory of Lucas' functions," Ann. of Math., v. 31, 1930, pp. 419-448.
  • [13] D. H. Lehmer, "The primality of Ramanujan's Tau-function," Amer. Math. Monthly, Slaught Mem. Papers, Computers and Computing, no. 10, 1965, pp. 15-18. MR 0172855 (30:3072)
  • [14] D. H. Lehmer, "On the converse of Fermat's theorem," Amer. Math. Monthly, v. 43, 1936, pp. 347-354.
  • [15] D. H. Lehmer, Guide to Tables in the Theory of Numbers, Bulletin of the National Research Council, v. 105, Washington, D. C., 1941, pp. 29-30. MR 2, 247. MR 0003625 (2:247a)
  • [16] D. N. Lehmer, "Hunting big game in the theory of numbers," Scripta Math., 1933, pp. 229-235.
  • [17] R. M. Robinson, "The converse of Fermat's theorem," Amer. Math. Monthly, v. 64, 1957, pp. 703-710. MR 20 #4520. MR 0098057 (20:4520)
  • [18] R. M. Robinson, "Some factorizations of numbers of the form $ {2^n} \mp 1$," MTAC, v. 11, 1957, pp. 265-268. MR 20 #832. MR 0094313 (20:832)
  • [19] D. Shanks, Solved and Unsolved Problems in Number Theory, Vol. I, Spartan, Washington, D. C., 1962, pp. 115-120. MR 28 #3952. MR 0160741 (28:3952)
  • [20] J. V. Uspensky & M. A. Heaslet, Elementary Number Theory, McGraw-Hill, New York, 1939, pp. 317-323. MR 1, 38.


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-67-99898-5
Article copyright: © Copyright 1967 American Mathematical Society

American Mathematical Society