Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Chebyshev approximations for the natural logarithm of the Gamma function


Authors: W. J. Cody and K. E. Hillstrom
Journal: Math. Comp. 21 (1967), 198-203
DOI: https://doi.org/10.1090/S0025-5718-67-99635-4
Full-text PDF

Abstract | References | Additional Information

Abstract: Rational Chebyshev approximations are given for the natural logarithm of the real gamma function for arguments in the intervals $ [0.5,1.5]$, $ [1.5,4.0]$ and $ [4.0,12.0]$. Maximal relative errors range down to $ 1 \times {10^{ - 17}}$.


References [Enhancements On Off] (What's this?)

  • [1] J. R. Rice, ``On the $ {L_\infty }$ Walsh arrays for $ \Gamma (x)$ and Erf $ c(x)$,'' Math. Comp., v. 18, 1964' pp. 617-626. MR 29 #6233. MR 0168978 (29:6233)
  • [2] John Hart et al, Handbook of Computer Approximations, Wiley, New York. (To appear.)
  • [3] M. Abramowitz & I. A. Stegun (Eds.), Handbook of Mathematical Functions, Appl. Math. Series, Vol. 55, National Bureau of Standards, U. S. Government Printing Office, Washington, D. C., 1964. MR 0167642 (29:4914)
  • [4] W. J. Cody & Joseph Stoer, ``Rational Chebyshev approximations using interpolation.'' (To appear.)


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-67-99635-4
Article copyright: © Copyright 1967 American Mathematical Society

American Mathematical Society