Bessel-function integrals needed for two classes of physics problems

Authors:
Charles E. McQueary and R. Mack, Lawrence

Journal:
Math. Comp. **21** (1967), 413-417

DOI:
https://doi.org/10.1090/S0025-5718-67-99148-X

Full-text PDF Free Access

References | Additional Information

**[1]**L. R. Mack & C. E. McQueary, ``Oscillations of a circular membrane on a nonlinear elastic foundation,''*J. Accoust. Soc. Amer.*(to appear).**[2]**L. R. Mack, ``Periodic, finite-amplitude, axisymmetric gravity waves,''*J. Geophys. Res.*, v. 67, 1962, pp. 829-843. MR**24**#B1824. MR**0135782 (24:B1824)****[3]**C. E. McQueary & L. G. Clark, ``Nonlinear periodic modes of oscillation of elastic continua,''*J. Acoust. Soc. Amer.*(to appear).**[4]**G. N. Watson,*A Treatise on the Theory of Bessel Functions*, 2nd ed., Cambridge Univ. Press, Cambridge; Macmillan, New York, 1944. MR**6**, 64. MR**0010746 (6:64a)****[5]**H. E. Fettis, ``Lommel-type integrals involving three Bessel functions,''*J. Math. Phys.*, v. 36, 1957, pp. 88-95. MR**19**, 771. MR**0090121 (19:771a)****[6]**L. R. Mack, ``Bessel-function identities needed for the theory of axisymmetric gravity waves,''*Math. Comp.*, v. 19, 1965, pp. 654-657. MR**33**#2833. MR**0194624 (33:2833)****[7]**S. A. Gill, ``A process for the step-by-step integration of differential equations in an automatic digital computing machine,''*Proc Cambridge Philos. Soc.*, v. 47, 1951, pp. 96-108. MR**12**, 538.**[8]**M. Abramowitz & I. A. Stegun, (Editors),*Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables*, National Bureau of Standards, Applied Math. Series, No. 55, U. S. Government Printing Office, Washington, D. C., 1964; reprint 1965. MR**29**#4914; MR**31**#1400. MR**0167642 (29:4914)**

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-67-99148-X

Article copyright:
© Copyright 1967
American Mathematical Society