Error analysis of recurrence equations

Author:
R. Tait

Journal:
Math. Comp. **21** (1967), 629-638

MSC:
Primary 65.25

DOI:
https://doi.org/10.1090/S0025-5718-1967-0221736-0

MathSciNet review:
0221736

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An error analysis of the Miller algorithm for computation from threeterm recurrence equations is given. Bounds are supplied in terms of the known coefficients and a method of finding suitable starting values for prescribed relative error is investigated.

**[1]**T. Fort,*Finite Differences and Difference Equations in the Real Domain*, Clarendon Press, Oxford, 1948. MR**9**, 514. MR**0024567 (9:514a)****[2]**A. Y. Khinchine,*Continued Fractions*, Noordhoff, Groningen, 1963. MR**28**#5038. MR**0161834 (28:5038)****[3]**A. N. Khovanski,*The Application of Continued Fractions and Their Generalizations to Problems in Approximation Theory*, Noordhoff, Groningen, 1963. MR**27**#6058. MR**0156126 (27:6058)****[4]**S. Makinouchi, Tech. Rep. Osaka Univ., No. 659, Vol. 15, Osaka, Japan.**[5]**J. C. P. Miller, "Bessel functions, Part II," in*Mathematical Tables*, Vol. X, British Assoc. Advancement Sci., Cambridge Univ. Press, New York, 1952.**[6]**F. W. J. Olver, "Error analysis of Miller's recurrence algorithm,"*Math. Comp.*, v. 18, 1964, pp. 65-74. MR**29**#6656. MR**0169406 (29:6656)****[7]**H. Shintani,*J. Sci. Hiroshima Univ.*, Ser. A-I, v. 29, 1965, pp. 121-133.**[8]**I. A. Stegun & M. Abramowitz, "Generation of Bessel functions on high speed computers,"*MTAC*, v. 11, 1957, pp. 255-257. MR**20**#459. MR**0093939 (20:459)****[9]**I. A. Stegun & M. Abramowitz (Editors),*Handbook of Mathematical Functions*, National Bureau of Standards Appl. Math. Series, 55, U. S. Government Printing Office, Washington, D. C., 1964. MR**29**#4914. MR**0167642 (29:4914)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65.25

Retrieve articles in all journals with MSC: 65.25

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1967-0221736-0

Article copyright:
© Copyright 1967
American Mathematical Society