A numerical method for locating the zeros of an analytic function
Authors:
L. M. Delves and J. N. Lyness
Journal:
Math. Comp. 21 (1967), 543560
MSC:
Primary 65.50
MathSciNet review:
0228165
Fulltext PDF Free Access
References 
Similar Articles 
Additional Information
 [1]
P.
Henrici and Bruce
O. Watkins, Finding zeros of a polynomial by the
𝑄𝐷 algorithm, Comm. ACM 8 (1965),
570–574. MR 0179935
(31 #4172)
 [2]
D.
H. Lehmer, The Graeffe process as applied to
power series, Mathematical Tables and other
Aids to Computation 1 (1945), 377–383. MR 0012913
(7,84a), http://dx.doi.org/10.1090/S00255718194500129138
 [3]
D. H. Lehmer, "A machine method for solving polynomial equations," J. Assoc. Comput. Mach., v. 8, 1961, pp. 151162.
 [4]
R. D. Low, "On the first positive zero of , considered as a function of ," Math. Comp., v. 20, 1966, pp. 42124.
 [5]
J.
N. Lyness and L.
M. Delves, On numerical contour integration round
a closed contour, Math. Comp. 21 (1967), 561–577. MR 0229388
(37 #4962), http://dx.doi.org/10.1090/S00255718196702293880
 [6]
J.
N. Lyness and C.
B. Moler, Numerical differentiation of analytic functions,
SIAM J. Numer. Anal. 4 (1967), 202–210. MR 0214285
(35 #5136)
 [7]
F.
W. J. Olver, The evaluation of zeros of highdegree
polynomials, Philos. Trans. Roy. Soc. London. Ser. A.
244 (1952), 385–415. MR 0049652
(14,209f)
 [8]
Heinz
Rutishauser, Der QuotientenDifferenzenAlgorithmus, Z. Angew.
Math. Physik 5 (1954), 233–251 (German). MR 0063763
(16,176c)
 [9]
J.
H. Wilkinson, Rounding errors in algebraic processes,
PrenticeHall, Inc., Englewood Cliffs, N.J., 1963. MR 0161456
(28 #4661)
 [1]
 P. Henrici & B. O. Watkins, "Finding zeros of a polynomial by the QD algorithm," Comm. ACM, v. 8, 1965, pp. 570574. MR 31 #4172. MR 0179935 (31:4172)
 [2]
 D. H. Lehmer, "The Graeffe process as applied to power series," MTAC, v. 1, 1945, pp. 377383. MR 7, 84. MR 0012913 (7:84a)
 [3]
 D. H. Lehmer, "A machine method for solving polynomial equations," J. Assoc. Comput. Mach., v. 8, 1961, pp. 151162.
 [4]
 R. D. Low, "On the first positive zero of , considered as a function of ," Math. Comp., v. 20, 1966, pp. 42124.
 [5]
 J. N. Lyness & L. M. Delves, "On numerical contour integration round a closed contour," Math. Comp., v. 21, 1967, pp. 561577. MR 0229388 (37:4962)
 [6]
 J. N. Lyness & C. B. Moler, "Numerical differentiation of analytic functions," J. SIAM Numer. Anal., v. 4, 1967, pp. 202210. MR 0214285 (35:5136)
 [7]
 F. W. J. Olver, "The evaluation of zeros of highdegree polynomials," Phil. Trans. Roy. Soc. A, v. 244, 1952, pp. 385415. MR 14, 209. MR 0049652 (14:209f)
 [8]
 H. Rutishauser, "Der QuotientenDifferenzenAlgorithmus," Z. Angew. Math. Phys., v. 5, 1954, pp. 233251. MR 16, 176. MR 0063763 (16:176c)
 [9]
 J. H. Wilkinson, Rounding Errors in Algebraic Processes, PrenticeHall, Englewood Cliffs, N. J., 1963. MR 28 #4661. MR 0161456 (28:4661)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
65.50
Retrieve articles in all journals
with MSC:
65.50
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718196702281654
PII:
S 00255718(1967)02281654
Article copyright:
© Copyright 1967
American Mathematical Society
