Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 

 

Zeros of $ J_n(\lambda)Y_n(\eta\lambda) - J_n(\eta\lambda)Y_n(\lambda)$


Authors: Joyce Weil, Tadepalli S. Murty and Desiraju B. Rao
Journal: Math. Comp. 21 (1967), 722-727
DOI: https://doi.org/10.1090/S0025-5718-67-99905-X
Full-text PDF Free Access

References | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] S. Chandrasekhar & D. Elbert, "The roots of $ {Y_n}(\lambda \eta ){J_n}(\lambda ) - {J_n}(\lambda \eta ){Y_n}(\lambda ) = 0$"Proc. Cambridge Philos. Soc., v. 50, 1954, pp. 266-68. MR 15, 744.
  • [2] Henry E. Fettis and James C. Caslin, An extended table of zeros of cross products of Bessel functions, Report No. ARL 66-0023, Aerospace Research Laboratories, Office of Aerospace Research, United States Air Force, Wright-Patterson Air Force Base, Ohio, 1966. MR 0203096
  • [3] A. Fletcher, J. C. P. Miller, L. Rosenhead & L. J. Comrie, An Index of Mathematical Tables, 2nd ed., Addison-Wesley, Reading, Mass., 1962. MR 26 #365a, b.
  • [4] James Mcmahon, On the roots of the Bessel and certain related functions, Ann. of Math. 9 (1894/95), no. 1-6, 23–30. MR 1502177, https://doi.org/10.2307/1967501
  • [5] Bessel functions. Part III: Zeros and associated values, Royal Society Mathematical Tables, Vol. 7. Prepared under the direction of the Bessel Functions Panel of the Mathematical Tables Committee, Cambridge University Press, New York, 1960. MR 0119441


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-67-99905-X
Article copyright: © Copyright 1967 American Mathematical Society