Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 

 

Concerning two series for the gamma function


Author: John W. Wrench
Journal: Math. Comp. 22 (1968), 617-626
MSC: Primary 65.25
DOI: https://doi.org/10.1090/S0025-5718-1968-0237078-4
Erratum: Math. Comp. 27 (1973), 681-682.
MathSciNet review: 0237078
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] Table of the gamma function for complex arguments, National Bureau of Standards Applied Mathematics Series, No. 34, U. S. Government Printing Office, Washington, D.C., 1954. MR 0065246
  • [2] L. Bourguet, Sur les intégrales eulériennes et quelques autres fonctions uniformes, Acta Math. 2 (1883), no. 1, 261–295 (French). MR 1554599, https://doi.org/10.1007/BF02415217
  • [3] MTAC, v. 1, 1943. p. 124, MTE 19.
  • [4] Tables of the mathematical functions. Vol. I, The Principia Press of Trinity University, San Antonio, Tex., 1963. MR 0158098
    Tables of the mathematical functions. Vol. II, The Principia Press of Trinity University, San Antonio, Tex., 1963. MR 0158099
  • [5] Milton Abramowitz and Irene A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, vol. 55, For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1964. MR 0167642
  • [6] M. Godart, An iterative method for the solution of eigenvalue problems, Math. Comp. 20 (1966), 399–406. MR 0203928, https://doi.org/10.1090/S0025-5718-1966-0203928-9
  • [7] E. T. Copson, Asymptotic expansions, Cambridge Tracts in Mathematics and Mathematical Physics, No. 55, Cambridge University Press, New York, 1965. MR 0168979
  • [8] Horace S. Uhler, The coefficients of Stirling’s series for logΓ(𝑥), Proc. Nat. Acad. Sci. U. S. A. 28 (1942), 59–62. MR 0006225
  • [9] F. D. Murnaghan & J. W. Wrench, Jr., The Converging Factor for the Exponential Integral, David Taylor Model Basin Report 1535, 1963.
  • [10] H. T. Davis, loc. cit., pp. 180-181.
  • [11] A. Fletcher, J. C. P. Miller, L. Rosenhead & L. J. Comrie, An Index of Mathematical Tables, Vol. I, 2nd ed., Addison-Wesley, Reading, Mass., 1962, p. 295. MR 26 #365a.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65.25

Retrieve articles in all journals with MSC: 65.25


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1968-0237078-4
Article copyright: © Copyright 1968 American Mathematical Society